7 resultados para Influence area
em Cambridge University Engineering Department Publications Database
Resumo:
The influence of surfactant on the breakup of a prestretched bubble in a quiescent viscous surrounding is studied by a combination of direct numerical simulation and the solution of a long-wave asymptotic model. The direct numerical simulations describe the evolution toward breakup of an inviscid bubble, while the effects of small but non-zero interior viscosity are readily included in the long-wave model for a fluid thread in the Stokes flow limit. The direct numerical simulations use a specific but realizable and representative initial bubble shape to compare the evolution toward breakup of a clean or surfactant-free bubble and a bubble that is coated with insoluble surfactant. A distinguishing feature of the evolution in the presence of surfactant is the interruption of bubble breakup by formation of a slender quasi-steady thread of the interior fluid. This forms because the decrease in surface area causes a decrease in the surface tension and capillary pressure, until at a small but non-zero radius, equilibrium occurs between the capillary pressure and interior fluid pressure. The long-wave asymptotic model, for a thread with periodic boundary conditions, explains the principal mechanism of the slender thread's formation and confirms, for example, the relatively minor role played by the Marangoni stress. The large-time evolution of the slender thread and the precise location of its breakup are, however, influenced by effects such as the Marangoni stress and surface diffusion of surfactant. © 2008 Cambridge University Press.
Resumo:
This paper describes the effect of the state of the inlet boundary layer (laminar or turbulent) on the structure of the endwall flow on two different profiles of low-pressure (LP) turbine blades (solid thin and hollow thick). At present the state of the endwall boundary layer at the inlet of a real LP turbine is not known. The intention of this paper is to show that, for different designs of LP turbine, the state of the inlet boundary layer affects the performance of the blade in very different ways. The testing was completed at low speed in a linear cascade using area traversing, flow visualization and static pressure measurements. The paper shows that, for a laminar inlet boundary layer, the two profiles have a similar loss distribution and structure of endwall flow. However, for a turbulent inlet boundary layer the two profiles are shown to differ significantly in both the total loss and endwall flow structure. The pressure side separation bubble on the solid thin profile is shown to interact with the passage vortex, causing a higher endwall loss than that measured on the hollow thick profile.
Resumo:
Technology roadmapping workshops are essentially a social mechanism for exploring, creating, shaping and implementing ideas. The front-end of a roadmapping session is based on brainstorming in order to tap into the group's diverse knowledge. The aim of this idea stimulation activity is to capture and share as many perspectives as possible across the full scope of the area of interest. The premise to such group brainstorming is that the sharing and exchange of ideas leads to cognitive stimulation resulting in a greater overall group idea generation performance in terms of the number, variety and originality of ideas. However, it must be recognized that the ideation stage in a roadmapping workshop is a complex psychosocial phenomenon with underlying cognitive and social processes. Thus, there are downsides to group interactions and these must be addressed in order to fully benefit from the power of a roadmapping workshop. This paper will highlight and discuss the key cognitive and social inhibitors involved. These include: production blocking, evaluation apprehension, free riding/social loafing, low norm setting/matching. Facilitation actions and process adjustments to counter such negative factors will be identified so as to provide a psychosocial basis for improving the running of roadmapping workshops. © 2009 PICMET.
Resumo:
We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally,we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system. £.
Resumo:
The present paper explores the influence of room geometry on the overturning of smoke owing to a centrally located floor fire, and examines the implications on smoke filling times. The focus is on presenting practical design guidelines based on the theoretical predictions of the model of Kaye and Hunt. An engineering platform is developed for the prediction of smoke filling times, and a rational basis is provided by way of which smoke behaviour can be specified for simple room designs. The time taken for smoke to fill a room to a given height is critically affected by the room aspect ratio and the characteristic size of the buoyancy source. At large times, taller (small aspect ratio) rooms are shown to fill with smoke at a faster rate than wide (large aspect ratio) rooms owing to large-scale overturning and engulfing of ambient air during the initial transients. Larger area sources of buoyancy also decrease significantly the smoke filling times, with important implications for fire and smoke safety design. Simplified design curves incorporating the main findings have been developed for use as a tool by practising fire-safety engineers.
Resumo:
Ba1.6Ca2.3Y1.1Fe5O13 is an Fe3+ oxide adopting a complex perovskite superstructure, which is an ordered intergrowth between the Ca2Fe2O5 and YBa2Fe3O8 structures featuring octahedral, square pyramidal, and tetrahedral B sites and three distinct A site environments. The distribution of A site cations was evaluated by combined neutron and X-ray powder diffraction. Consistent with the Fe3+ charge state, the material is an antiferromagnetic insulator with a Néel temperature of 480-485 °C and has a relatively low d.c. conductivity of 2.06 S cm-1 at 700 °C. The observed area specific resistance in symmetrical cell cathodes with the samarium-doped ceria electrolyte is 0.87 Ω cm2 at 700 °C, consistent with the square pyramidal Fe3+ layer favoring oxide ion formation and mobility in the oxygen reduction reaction. Density functional theory calculations reveal factors favoring the observed cation ordering and its influence on the electronic structure, in particular the frontier occupied and unoccupied electronic states. © 2010 American Chemical Society.