16 resultados para Inequality and Stratification

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the steady state natural ventilation of an enclosed space in which vent A, located at height hA above the floor, is connected to a vertical stack with a termination at height H, while the second vent, B, at height hB above the floor, connects directly to the exterior. We first examine the flow regimes which develop with a distributed source of heating at the base of the space. If hBhB>hA, then two different flow regimes may develop. Either (i) there is inflow through vent B and outflow through vent A, or (ii) the flow reverses, with inflow down the stack into vent A and outflow through vent B. With inflow through vent A, the internal temperature and ventilation rate depend on the relative height of the two vents, A and B, while with inflow through vent B, they depend on the height of vent B relative to the height of the termination of the stack H. With a point source of heating, a similar transition occurs, with a unique flow regime when vent B is lower than vent A, and two possible regimes with vent B higher than vent A. In general, with a point source of buoyancy, each steady state is characterised by a two-layer density stratification. Depending on the relative heights of the two vents, in the case of outflow through vent A connected to the stack, the interface between these layers may lie above, at the same level as or below vent A, leading to discharge of either pure upper layer, a mixture of upper and lower layer, or pure lower layer fluid. In the case of inflow through vent A connected to the stack, the interface always lies below the outflow vent B. Also, in this case, if the inflow vent A lies above the interface, then the lower layer becomes of intermediate density between the upper layer and the external fluid, whereas if the interface lies above the inflow vent A, then the lower layer is composed purely of external fluid. We develop expressions to predict the transitions between these flow regimes, in terms of the heights and areas of the two vents and the stack, and we successfully test these with new laboratory experiments. We conclude with a discussion of the implications of our results for real buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The airflow and thermal stratification produced by a localised heat source located at floor level in a closed room is of considerable practical interest and is commonly referred to as a 'filling box'. In rooms with low aspect ratios H/R ≲ 1 (room height H to characteristic horizontal dimension R) the thermal plume spreads laterally on reaching the ceiling and a descending horizontal 'front' forms separating a stably stratified, warm upper region from cooler air below. The stratification is well predicted for H/R ≲ 1 by the original filling box model of Baines and Turner (J. Fluid. Mech. 37 (1968) 51). This model represents a somewhat idealised situation of a plume rising from a point source of buoyancy alone-in particular the momentum flux at the source is zero. In practical situations, real sources of heating and cooling in a ventilation system often include initial fluxes of both buoyancy and momentum, e.g. where a heating system vents warm air into a space. This paper describes laboratory experiments to determine the dependence of the 'front' formation and stratification on the source momentum and buoyancy fluxes of a single source, and on the location and relative strengths of two sources from which momentum and buoyancy fluxes were supplied separately. For a single source with a non-zero input of momentum, the rate of descent of the front is more rapid than for the case of zero source momentum flux and increases with increasing momentum input. Increasing the source momentum flux effectively increases the height of the enclosure, and leads to enhanced overturning motions and finally to complete mixing for highly momentum-driven flows. Stratified flows may be maintained by reducing the aspect ratio of the enclosure. At these low aspect ratios different long-time behaviour is observed depending on the nature of the heat input. A constant heat flux always produces a stratified interior at large times. On the other hand, a constant temperature supply ultimately produces a well-mixed space at the supply temperature. For separate sources of momentum and buoyancy, the developing stratification is shown to be strongly dependent on the separation of the sources and their relative strengths. Even at small separation distances the stratification initially exhibits horizontal inhomogeneity with localised regions of warm fluid (from the buoyancy source) and cool fluid. This inhomogeneity is less pronounced as the strength of one source is increased relative to the other. Regardless of the strengths of the sources, a constant buoyancy flux source dominates after sufficiently large times, although the strength of the momentum source determines whether the enclosure is initially well mixed (strong momentum source) or stably stratified (weak momentum source). © 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this study was to examine the operating characteristics of a light duty multi cylinder compression ignition engine with regular gasoline fuel at low engine speed and load. The effects of fuel stratification by means of multiple injections as well as the sensitivity of auto-ignition and burn rate to intake pressure and temperature are presented. The measurements used in this study included gaseous emissions, filter smoke opacity and in-cylinder indicated information. It was found that stable, low emission operation was possible with raised intake manifold pressure and temperature, and that fuel stratification can lead to an increase in stability and a reduced reliance on increased temperature and pressure. It was also found that the auto-ignition delay sensitivity of gasoline to intake temperature and pressure was low within the operating window considered in this study. Nevertheless, the requirement for an increase of pressure, temperature and stratification in order to achieve auto-ignition time scales small enough for combustion in the engine was clear, using pump gasoline. Copyright © 2009 SAE International.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents flow field measurements for the turbulent stratified burner introduced in two previous publications in which high resolution scalar measurements were made by Sweeney et al. [1,2] for model validation. The flow fields of the series of premixed and stratified methane/air flames are investigated under turbulent, globally lean conditions (φg=0.75). Velocity data acquired with laser Doppler anemometry (LDA) and particle image velocimetry (PIV) are presented and discussed. Pairwise 2-component LDA measurements provide profiles of axial velocity, radial velocity, tangential velocity and corresponding fluctuating velocities. The LDA measurements of axial and tangential velocities enable the swirl number to be evaluated and the degree of swirl characterized. Power spectral density and autocorrelation functions derived from the LDA data acquired at 10kHz are optimized to calculate the integral time scales. Flow patterns are obtained using a 2-component PIV system operated at 7Hz. Velocity profiles and spatial correlations derived from the PIV and LDA measurements are shown to be in very good agreement, thus offering 3D mapping of the velocities. A strong correlation was observed between the shape of the recirculation zones above the central bluff body and the effects of heat release, stoichiometry and swirl. Detailed analyses of the LDA data further demonstrate that the flow behavior changes significantly with the levels of swirl and stratification, which combines the contributions of dilatation, recirculation and swirl. Key turbulence parameters are derived from the total velocity components, combining axial, radial and tangential velocities. © 2013 The Combustion Institute.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flames are often stabilised on bluff-bodies, yet their surface temperatures are rarely measured. This paper presents temperature measurements for the bluff body surface of the Cambridge/Sandia Stratified Swirl Burner. The flame is stabilized by a bluff body, designed to provide a series of turbulent premixed and stratified methane/air flames with a variable degree of swirl and stratification. Recently, modellers have raised concerns about the role of surface temperature on the resulting gas temperatures and the overall heat loss of the burner. Laser-induced phosphorescence is used to measure surface temperatures, with Mg4GeO6F:Mn as the excitation phosphor, creating a spatially resolved temperature map. Results show that the temperature of the bluff body is in the range 550-900 K for different operating conditions. The temperature distribution is strongly correlated with the degree of swirl and local equivalence ratio, reflecting the temperature distribution obtained in the gas phase. The overall heat loss represents only a small fraction (<0.5%) of the total heat load, yet the local surface temperature may affect the local heat transfer and gas temperatures. © 2014 The Combustion Institute.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider unforced, statistically-axisymmetric turbulence evolving in the presence of a background rotation, an imposed stratification, or a uniform magnetic field. We focus on two canonical cases: Saffman turbulence, in which E(κ → 0) ∼ κ 2, and Batchelor turbulence, in which E(κ → 0) ∼ κ 4. It has recently been shown that, provided the large scales evolve in a self-similar manner, then u ⊥ 2ℓ ⊥ 2ℓ // = constant in Saffman turbulence and u ⊥ 2ℓ ⊥ 4ℓ // = constant in Batchelor turbulence (Davidson, 2009, 2010). Here the subscripts ⊥ and // indicate directions perpendicular and parallel to the axis of symmetry, and ℓ ⊥, ℓ //, and u ⊥ are suitably defined integral scales. These constraints on the integral scales allow us to make simple, testable predictions for the temporal evolution of ℓ ⊥, ℓ //, and u ⊥ in rotating, stratified and MHD turbulence.