3 resultados para Incineration
em Cambridge University Engineering Department Publications Database
Resumo:
The production of long-lived transuranic (TRU) waste is a major disadvantage of fission-based nuclear power. Incineration, and virtual elimination, of waste stockpiles is possible in a thorium (Th) fuelled critical or subcritical fast reactor. Fuel cycles producing a net decrease in TRUs are possible in conventional pressurised water reactors (PWRs). However, minor actinides (MAs) have a detrimental effect on reactivity and stability, ultimately limiting the quality and quantity of waste that can be incinerated. In this paper, we propose using a thorium-retained-actinides fuel cycle in PWRs, where the reactor is fuelled with a mixture of thorium and TRU waste, and after discharge all actinides are reprocessed and returned to the reactor. To investigate the feasibility and performance of this fuel cycle an assembly-level analysis for a one-batch reloading strategy was completed over 125 years of operation using WIMS 9. This one-batch analysis was performed for simplicity, but allowed an indicative assessment of the performance of a four-batch fuel management strategy. The build-up of 233U in the reactor allowed continued reactive and stable operation, until all significant actinide populations had reached pseudo-equilibrium in the reactor. It was therefore possible to achieve near-complete transuranic waste incineration, even for fuels with significant MA content. The average incineration rate was initially around 330 kg per GW th year and tended towards 250 kg per GW th year over several decades: a performance comparable to that achieved in a fast reactor. Using multiple batch fuel management, competitive or improved end-of-cycle burn-up appears achievable. The void coefficient (VC), moderator temperature coefficient (MTC) and Doppler coefficient remained negative. The quantity of soluble boron required for a fixed fuel cycle length was comparable to that for enriched uranium fuel, and acceptable amounts can be added without causing a positive VC or MTC. This analysis is limited by the consideration of a single fuel assembly, and it will be necessary to perform a full core coupled neutronic-thermal-hydraulic analysis to determine if the design in its current form is feasible. In particular, the potential for positive VCs if the core is highly or locally voided is a cause for concern. However, these results provide a compelling case for further work on concept feasibility and fuel management, which is in progress. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of this work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO2 fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO2 core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO2 core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO2 core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO2 fuel.
Resumo:
There is potential to extract energy from wastewater in a number of ways, including: kinetic energy using micro-hydro systems, chemical energy through the incineration of sludge, biomass energy from the biogas produced after anaerobic sludge digestion, and thermal energy as heat. This paper considers the last option and asks how much heat could be recovered under UK climatic conditions and can this heat be used effectively by wastewater treatment plants to reduce their carbon footprint? Four wastewater treatment sites in southern England are investigated and the available heat that can be recovered at those sites is quantified. Issues relating to the environmental, economic and practical constraints on how energy can be realistically recovered and utilised are discussed .The results show there is a definite possibility for thermal energy recovery with potential savings at some sites of up to 35,000 tonnes of total long-cycle carbon equivalent (fossil fuel) emissions per year being achievable. The paper also shows that the financial feasibility of three options for using the heat (either for district heating, sludge drying or thermophilic heating in sludge digestion processes) is highly dependant upon the current shadow price of carbon. Without the inclusion of the cost of carbon, the financial feasibility is significantly limited. An environmental constraint for the allowable discharge temperature of effluent after heat-extraction was found to be the major limitation to the amount of energy available for recovery. The paper establishes the true potential of thermal energy recovery from wastewater in English conditions and the economic feasibility of reducing the carbon footprint of wastewater treatment operations using this approach.