14 resultados para Implant-based breast reconstruction

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existing machine vision-based 3D reconstruction software programs provide a promising low-cost and in some cases automatic solution for infrastructure as-built documentation. However in several steps of the reconstruction process, they only rely on detecting and matching corner-like features in multiple views of a scene. Therefore, in infrastructure scenes which include uniform materials and poorly textured surfaces, these programs fail with high probabilities due to lack of feature points. Moreover, except few programs that generate dense 3D models through significantly time-consuming algorithms, most of them only provide a sparse reconstruction which does not necessarily include required points such as corners or edges; hence these points have to be manually matched across different views that could make the process considerably laborious. To address these limitations, this paper presents a video-based as-built documentation method that automatically builds detailed 3D maps of a scene by aligning edge points between video frames. Compared to corner-like features, edge points are far more plentiful even in untextured scenes and often carry important semantic associations. The method has been tested for poorly textured infrastructure scenes and the results indicate that a combination of edge and corner-like features would allow dealing with a broader range of scenes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large concrete structures need to be inspected in order to assess their current physical and functional state, to predict future conditions, to support investment planning and decision making, and to allocate limited maintenance and rehabilitation resources. Current procedures in condition and safety assessment of large concrete structures are performed manually leading to subjective and unreliable results, costly and time-consuming data collection, and safety issues. To address these limitations, automated machine vision-based inspection procedures have increasingly been proposed by the research community. This paper presents current achievements and open challenges in vision-based inspection of large concrete structures. First, the general concept of Building Information Modeling is introduced. Then, vision-based 3D reconstruction and as-built spatial modeling of concrete civil infrastructure are presented. Following that, the focus is set on structural member recognition as well as on concrete damage detection and assessment exemplified for concrete columns. Although some challenges are still under investigation, it can be concluded that vision-based inspection methods have significantly improved over the last 10 years, and now, as-built spatial modeling as well as damage detection and assessment of large concrete structures have the potential to be fully automated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Image-based (i.e., photo/videogrammetry) and time-of-flight-based (i.e., laser scanning) technologies are typically used to collect spatial data of infrastructure. In order to help architecture, engineering, and construction (AEC) industries make cost-effective decisions in selecting between these two technologies with respect to their settings, this paper makes an attempt to measure the accuracy, quality, time efficiency, and cost of applying image-based and time-of-flight-based technologies to conduct as-built 3D reconstruction of infrastructure. In this paper, a novel comparison method is proposed, and preliminary experiments are conducted. The results reveal that if the accuracy and quality level desired for a particular application is not high (i.e., error < 10 cm, and completeness rate > 80%), image-based technologies constitute a good alternative for time-of-flight-based technologies and significantly reduce the time and cost needed for collecting the data on site.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Image-based (i.e., photo/videogrammetry) and time-of-flight-based (i.e., laser scanning) technologies are typically used to collect spatial data of infrastructure. In order to help architecture, engineering, and construction (AEC) industries make cost-effective decisions in selecting between these two technologies with respect to their settings, this paper makes an attempt to measure the accuracy, quality, time efficiency, and cost of applying image-based and time-of-flight-based technologies to conduct as-built 3D reconstruction of infrastructure. In this paper, a novel comparison method is proposed, and preliminary experiments are conducted. The results reveal that if the accuracy and quality level desired for a particular application is not high (i.e., error < 10 cm, and completeness rate > 80%), image-based technologies constitute a good alternative for time-of-flight-based technologies and significantly reduce the time and cost needed for collecting the data on site.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An approach of rapid hologram generation for the realistic three-dimensional (3-D) image reconstruction based on the angular tiling concept is proposed, using a new graphic rendering approach integrated with a previously developed layer-based method for hologram calculation. A 3-D object is simplified as layered cross-sectional images perpendicular to a chosen viewing direction, and our graphics rendering approach allows the incorporation of clear depth cues, occlusion, and shading in the generated holograms for angular tiling. The combination of these techniques together with parallel computing reduces the computation time of a single-view hologram for a 3-D image of extended graphics array resolution to 176 ms using a single consumer graphics processing unit card. © 2014 SPIE and IS and T.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a novel framework to construct a geometric and photometric model of a viewed object that can be used for visualisation in arbitrary pose and illumination. The method is solely based on images and does not require any specialised equipment. We assume that the object has a piece-wise smooth surface and that its reflectance can be modelled using a parametric bidirectional reflectance distribution function. Without assuming any prior knowledge on the object, geometry and reflectance have to be estimated simultaneously and occlusion and shadows have to be treated consistently. We exploit the geometric and photometric consistency using the fact that surface orientation and reflectance are local invariants. In a first implementation, we demonstrate the method using a Lambertian object placed on a turn-table and illuminated by a number of unknown point light-sources. A discrete voxel model is initialised to the visual hull and voxels identified as inconsistent with the invariants are removed iteratively. The resulting model is used to render images in novel pose and illumination. © 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the pioneering work of Gibson in 1950, Shape- From-Texture has been considered by researchers as a hard problem, mainly due to restrictive assumptions which often limit its applicability. We assume a very general stochastic homogeneity and perspective camera model, for both deterministic and stochastic textures. A multi-scale distortion is efficiently estimated with a previously presented method based on Fourier analysis and Gabor filters. The novel 3D reconstruction method that we propose applies to general shapes, and includes non-developable and extensive surfaces. Our algorithm is accurate, robust and compares favorably to the present state of the art of Shape-From- Texture. Results show its application to non-invasively study shape changes with laid-on textures, while rendering and retexturing of cloth is suggested for future work. © 2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we aim to reconstruct free-from 3D models from a single view by learning the prior knowledge of a specific class of objects. Instead of heuristically proposing specific regularities and defining parametric models as previous research, our shape prior is learned directly from existing 3D models under a framework based on the Gaussian Process Latent Variable Model (GPLVM). The major contributions of the paper include: 1) a probabilistic framework for prior-based reconstruction we propose, which requires no heuristic of the object, and can be easily generalized to handle various categories of 3D objects, and 2) an attempt at automatic reconstruction of more complex 3D shapes, like human bodies, from 2D silhouettes only. Qualitative and quantitative experimental results on both synthetic and real data demonstrate the efficacy of our new approach. ©2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper tackles the novel challenging problem of 3D object phenotype recognition from a single 2D silhouette. To bridge the large pose (articulation or deformation) and camera viewpoint changes between the gallery images and query image, we propose a novel probabilistic inference algorithm based on 3D shape priors. Our approach combines both generative and discriminative learning. We use latent probabilistic generative models to capture 3D shape and pose variations from a set of 3D mesh models. Based on these 3D shape priors, we generate a large number of projections for different phenotype classes, poses, and camera viewpoints, and implement Random Forests to efficiently solve the shape and pose inference problems. By model selection in terms of the silhouette coherency between the query and the projections of 3D shapes synthesized using the galleries, we achieve the phenotype recognition result as well as a fast approximate 3D reconstruction of the query. To verify the efficacy of the proposed approach, we present new datasets which contain over 500 images of various human and shark phenotypes and motions. The experimental results clearly show the benefits of using the 3D priors in the proposed method over previous 2D-based methods. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimating the fundamental matrix (F), to determine the epipolar geometry between a pair of images or video frames, is a basic step for a wide variety of vision-based functions used in construction operations, such as camera-pair calibration, automatic progress monitoring, and 3D reconstruction. Currently, robust methods (e.g., SIFT + normalized eight-point algorithm + RANSAC) are widely used in the construction community for this purpose. Although they can provide acceptable accuracy, the significant amount of required computational time impedes their adoption in real-time applications, especially video data analysis with many frames per second. Aiming to overcome this limitation, this paper presents and evaluates the accuracy of a solution to find F by combining the use of two speedy and consistent methods: SURF for the selection of a robust set of point correspondences and the normalized eight-point algorithm. This solution is tested extensively on construction site image pairs including changes in viewpoint, scale, illumination, rotation, and moving objects. The results demonstrate that this method can be used for real-time applications (5 image pairs per second with the resolution of 640 × 480) involving scenes of the built environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Camera motion estimation is one of the most significant steps for structure-from-motion (SFM) with a monocular camera. The normalized 8-point, the 7-point, and the 5-point algorithms are normally adopted to perform the estimation, each of which has distinct performance characteristics. Given unique needs and challenges associated to civil infrastructure SFM scenarios, selection of the proper algorithm directly impacts the structure reconstruction results. In this paper, a comparison study of the aforementioned algorithms is conducted to identify the most suitable algorithm, in terms of accuracy and reliability, for reconstructing civil infrastructure. The free variables tested are baseline, depth, and motion. A concrete girder bridge was selected as the "test-bed" to reconstruct using an off-the-shelf camera capturing imagery from all possible positions that maximally the bridge's features and geometry. The feature points in the images were extracted and matched via the SURF descriptor. Finally, camera motions are estimated based on the corresponding image points by applying the aforementioned algorithms, and the results evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A holographic rendering algorithm using a layer-based structure with angular tiling supports view-dependent shading and accommodation cues. This approach also has the advantages of rapid computation speed and visual reduction of layer gap artefacts compared to other approaches. Holograms rendered with this algorithm are displayed using an SLM to demonstrate view-dependent shading and occlusion. © 2013 SPIE-IS&T.