138 resultados para INVERSION-LAYERS

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect ( ± 10dB) on the surface vibration response. © 2009 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon thin films are very important as protective coatings for a wide range of applications such as magnetic storage devices. The key parameter of interest is the sp3 fraction, since it controls the mechanical properties of the film. Visible Raman spectroscopy is a very popular technique to determine the carbon bonding. However, the visible Raman spectra mainly depend on the configuration and clustering of the sp2 sites. This can result in the Raman spectra of different samples looking similar albeit having a different structure. Thus, visible Raman alone cannot be used to derive the sp3 content. Here we monitor the carbon bonding by using a combined study of Raman spectra taken at two wavelengths (514 and 244 nm). We show how the G peak dispersion is a very useful parameter to investigate the carbon samples and we endorse it as a production-line characterisation tool. The dispersion is proportional to the degree of disorder, thus making it possible to distinguish between graphitic and diamond-like carbon. © 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a technique for independently exciting two resonant modes of vibration in a single-crystal silicon bulk mode microresonator using the same electrode configuration through control of the polarity of the DC actuation voltage. Applications of this technique may include built-in temperature compensation by the simultaneous selective excitation of two closely spaced modes that may have different temperature coefficients of resonant frequency. The technique is simple and requires minimum circuit overhead for implementation. The technique is implemented on square plate resonators with quality factors as high as 3.06 × 106. Copyright © 2008 by ASME.