34 resultados para INP(110)
em Cambridge University Engineering Department Publications Database
Resumo:
We report an InGaAsP/InP MQW phase modulator operating over the entire 1.55μm fiber band with high phase modulation efficiency and low loss modulation. The spectral dependence of the electro-refraction in a MQW structure is measured for the first time.
Resumo:
We report an InGaAsP/InP phase modulator operating in the 1.5μm wavelength band. Phase modulation of 7.5°/mA and 1.7°/mA of injected current have been measured for TE and TM polarised light respectively at a signal wavelength of 1.52 μm.
Resumo:
We report the first measurement of two-photon absorption (TPA) and self-phase modulation in an InGaAsP/InP multi-quantum-well waveguide. The TPA coefficient, β2, was found to be 60±10 cm/GW at 1.55 μm. Despite operating at 200 nm from the band edge, self-phase modulation as high as 8±2 rad was observed for 30-ps optical pulses at 3.8-W peak input power. A theoretical calculation indicates that this enhanced phase modulation is primarily due to bandfilling in the quantum wells and the free-carrier plasma effect.
Resumo:
This work demonstrates transmission at 2.5 Gbit/s across two wavelength-division multiplexing (WDM) network nodes, constructed using counter-propagating semiconductor optical amplifier (SOA) wavelength converters and an integrated wavelength-selective router separated by 45 km of fiber, with an overall penalty of 0.6 dB. Minimal degradation of the eye diagram is evident across the whole system. Full utilization of the capacity of the router would allow an aggregate 360-Gbit/s node capacity for a WDM channel of 2.5 Gb/s.