10 resultados para ICTP

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need to create high-value products for specialist applications, and the search for efficient forming routes that obviate the need for some machining steps, is driving Interest In a novel class of forming processes aiming to create locally thickened features within sheet work- pieces. A number of novel forming processes have been proposed to meet this need, but it is as yet unclear which processes will be most effective in creating local thickening of various geometries, and many process configurations have yet to be tried. This paper aims to provide some basic principles for designing and characterising process behaviour. A simplified generic description of sheet thickening processes is provided, with two tools of variable operating on a sheet workpiece in plane strain, with different tool separations and motions parameterised. A comprehensive numerical study of the behaviour of this class of processes is conducted in Abaqus to predict the main characteristics of the material flow in each configuration. The results are used to classify the different basic behaviours that can be achieved by the sheet-bulk thickening processes and to give guidance on future process development, capability and applicability. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toolpath design in spinning is an open ended problem, with a large number of solutions, and remains an art acquired by practice. To be able to specify a toolpath without the need for experimental trials, further understanding of the process mechanics Is required. At the moment, the mechanics of the process Is not completely understood, due to the complex deformation and because long solution times required for accurate numerical modelling of the process Inhibit detailed study. This paper proposes and applies a new approach to modelling the process and aims to contribute to the understanding of process mechanics, In particular with respect to the mechanisms of failure and and to apply this understanding for toolpath design In spinning. A new approach to numerical modelling Is proposed and applied to Investigate the process. The findings suggest that there are two different causes and two different modes of wrinkling In spinning, depending on the stage In the process and direction of roller movement. A simple test Is performed to estimate the limits of wrinkling and provide a guideline for toolpath design In a typical spinning process. The results show that the required toolpath geometry in the early stages of the process is different from that In later stages. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A process is presented for the forming of variable cross-section I-beams by hot rolling. Optimized I-beams with variable cross-section offer a significant weight advantage over prismatic beams. By tailoring the cross-section to the bending moment experienced within the beam, around 30% of the material can be saved compared to a standard section. Production of such beams by hot rolling would be advantageous, as It combines high volume capacity with high material yields. Through controlled variation of the roll gap during multiple passes, beams with a variable cross-section have been created using shaped rolls similar to those used for conventional I-beam rolling. The process was tested experimentally on a small scale rolling mill, using plasticine as the modelling material. These results were then compared to finite element simulations of individual stages of the process conducted using Abaqus/Standard. Results here show that the process can successfully form a beam with a variable depth web. The main failure modes of the process, and the limitations on the achievable variations In geometry are also presented. Finally, the question of whether or not optimal beam geometries can be created by this process Is discussed. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Production of steel and aluminium creates 10% of global carbon emissions from energy and processes. Demand is likely to double by 2050, but climate scientists are recommending absolute reductions of at least 50% and these are Increasingly entering law. How can reductions of this order happen? Only 10-20% savings can be expected in liquid metal production, so the primary industry is pursuing carbon sequestration as the main solution. However, this Is as yet unproven at scale, and as well as carrying some risk, the capital and operating costs are likely to be high, but are as yet unknown. In parallel with these strategies we can also examine whether we can reduce demand for liquid metal. 'Material efficiency' may allow delivery of existing services with less requirement for metal, for instance through designing products that use less metal, reducing process scrap, diverting scrap for other use, re-using components or delaying end of life. Overall demand reduction could occur if goods were used more intensely, alternative means were used to deliver the same services, or total demand were constrained. The paper analyses all possible options, to define and evaluate scenarios that meet the 2050 target, and discuss the steps required to bring them about. The paper concludes with suggestions for key areas where future research In metal forming can support a future low carbon economy. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.