228 resultados para Hydrostatic pressure

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of mechanical constraint imposed by device geometry upon the switching response of a ferroelectric thin film memory capacitor is investigated. The memory capacitor was represented by two-dimensional ferroelectric islands of different aspect ratio, mechanically constrained by surrounding materials. Its ferroelectric non-linear behaviour was modeled by a crystal plasticity constitutive law and calculated using the finite element method. The switching response of the device, in terms of remnant charge storage, was determined as a function of geometry and constraint. The switching response under applied in-plane tensile stress and hydrostatic pressure was also studied experimentally. Our results showed that (1) the capacitor's aspect ratio could significantly affect the clamping behaviour and thus the remnant polarization, (2) it was possible to maximise the switching charge through the optimisation of the device geometry, and (3) it is possible to find a critical switching stress at zero electric field and a critical coercive field at zero residual stress. © 2009 Materials Research Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

D Liang from Cambridge University explains the shallow water equations and their applications to the dam-break and other steep-fronted flow modeling. They assume that the horizontal scale of the flow is much greater than the vertical scale, which means the flow is restricted within a thin layer, thus the vertical momentum is insignificant and the pressure distribution is hydrostatic. The left hand sides of the two momentum equations represent the acceleration of the fluid particle in the horizontal plane. If the fluid acceleration is ignored, then the two momentum equations are simplified into the so-called diffusion wave equations. In contrast to the SWEs approach, it is much less convenient to model floods with the Navier-Stokes equations. In conventional computational fluid dynamics (CFD), cumbersome treatments are needed to accurately capture the shape of the free surface. The SWEs are derived using the assumptions of small vertical velocity component, smooth water surface, gradual variation and hydrostatic pressure distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While static equilibria of flexible strings subject to various load types (gravity, hydrostatic pressure, Newtonian wind) is well understood textbook material, the combinations of the very same loads can give rise to complex spatial behaviour at the core of which is the unilateral material constraint prohibiting compressive loads. While the effects of such constraints have been explored in optimisation problems involving straight cables, the geometric complexity of physical configurations has not yet been addressed. Here we show that flexible strings subject to combined smooth loads may not have smooth solutions in certain ranges of the load ratios. This non-smooth phenomenon is closely related to the collapse geometry of inflated tents. After proving the nonexistence of smooth solutions for a broad family of loadings we identify two alternative, critical geometries immediately preceding the collapse. We verify these analytical results by dynamical simulation of flexible chains as well as with simple table-top experiments with an inflated membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by recent experimental work, we use first-principles density functional theory methods to conduct an extensive search for low enthalpy structures of C$_6$Ca under pressure. As well as a range of buckled structures, which are energetically competitive over an intermediate range of pressures, we show that the high pressure system ($\gtrsim 18$ GPa) is unstable towards the formation of a novel class of layered structures, with the most stable compound involving carbon sheets containing five- and eight-membered rings. As well as discussing the energetics of the different classes of low enthalpy structures, we comment on the electronic structure of the high pressure compound and its implications for superconductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-pressure methane plasma generated by electron cyclotron wave resonance was characterized in terms of electron temperature, plasma density and composition. Methane plasmas were commonly used in the deposition of hydrogenated amorphous carbon thin films. Little variation in the plasma chemistry was observed by mass spectrometry measurements of the gas phase with increasing electron temperature. The results show that direct electron-impact reactions exert greater influence on the plasma chemistry than secondary ion-neutral reactions.