241 resultados para Hydraulic measurements.
em Cambridge University Engineering Department Publications Database
Resumo:
Hydrodynamic properties of the surface vortex have been investigated. Based on the Navier-Stokes equations, three sets of the new formulations for the tangential velocity distributions are derived, and verified against the experimental measurements in the literature. It is shown that one modification greatly improves the agreement with the experimental data. Physical model experiments were carried out to study the intake vortex related to the Xiluodu hydropower project. The velocity fields were measured using the Particle Tracking Velocimetry (PTV) technique. The proposed equation for tangential velocity distribution is applied to the Xiluodu project with the solid boundary being considered by the method of images. Good agreement has been observed between the formula prediction and the experimental observation. © 2010 Publishing House for Journal of Hydrodynamics.
Resumo:
Future microrobotic applications require actuators that can generate a high actuation force and stroke in a limited volume. Up to now, little research has been performed on the development of pneumatic and hydraulic microactuators, although they offer great prospects in achieving high force densities. One of the main technological barriers in the development of these actuators is the fabrication of powerful seals with low leakage. This paper presents a seal technology for linear fluidic microactuators based on ferrofluids. A design and simulation method for these seals has been developed and validated by measurements on miniaturized actuator prototypes. These actuators have an outside diameter of 2 mm, a length of 13 mm and have been tested using both pressurized air and water. Our current actuator prototypes are able to operate at pressures up to 1.6 MPa without leakage. At these pressures, forces up to 0.65 N have been achieved. The stroke of the actuators is 10 mm. © 2009 Elsevier B.V. All rights reserved.
Resumo:
To improve the force output of microactuators, this work focuses on actuators driven by pressurized gasses or liquids. Despite their well known ability to generate high actuation forces, hydraulic actuators remain uncommon in microsystems. This is both due to the difficulty of fabricating these microactuators with the existing micromachining processes and to the lack of adequate microseals. This paper describes how to overcome these limitations with a combination of anisotropic micromachining, UV definable polymers and low temperature bonding. The functionality of these actuators is proven by extensive measurements which showed that actuation forces of 0.1 N can be achieved for actuators with an active cross-section of 0.15 mm2. This is an order of magnitude higher than what is reported for classic MEMS actuators of similar size.
Resumo:
Fluids with a controllable viscosity gained a lot of interest throughout the last years. One of the advantages of these fluids is that they allow to fabricate hydraulic components such as valves with a very simple structure. Although the properties of these fluids are very interesting for microsystems, their applicability is limited at microscale since the particles suspended in these fluids tend to obstruct microchannels. This paper investigates the applicability of electrorheologic Liquid Crystals (LCs) in microsystems. Since LC's do not contain suspended particles, they show intrinsic advantages over classic rheologic active fluids in microapplications. As a matter of fact, LC molecules are usually only a few nanometers long, and therefore, they can probably be used in systems with sub-micrometer channels or other nanoscale applications. This paper presents a novel model describing the electrorheologic behavior of these nanoscale molecules. This model is used to simulate a microvalve controlled by LC's. By comparing measurements and simulations performed on this microvalve it is possible to prove that the model developed in this paper is very accurate. In addition, these simulations and measurements revealed other remarkable properties of LC's, such as high bandwidths and high changes in flow resistance. © 2006 IEEE.
Resumo:
In order to improve the power density of microactuators, recent research focuses on the applicability of fluidic power at microscale. One of the reasons that hydraulic actuators are still uncommon in micro system technology is due to the difficulty of fabricating powerful microseals. This paper presents two seal technologies that are suitable for sealing small-scale hydraulic actuators. Measurements on prototype actuators show that force densities up to 0,45 N/mm2 (0,025 N/mm3) and work densities up to 0,2 mJ/mm3 can easily be achieved with the developed seal technology. These characteristics can still be improved as the maximum driving pressures of the actuators have not yet been determined. © 2005 IEEE.
Resumo:
In order to improve the power density of microactuators, recent research focuses on the applicability of fluidic actuation at the microscale. The main encountered difficulties in the development of small fluidic actuators are related to production tolerances and assembly requirements. In addition, these actuators tend to comprise highly three-dimensional parts, which are incompatible with traditional microproduction technologies. This paper presents accurate production and novel assembly techniques for the development of a hydraulic microactuator. Some of the presented techniques are widespread in precision mechanics, but have not yet been introduced in micromechanics. A prototype hydraulic microactuator with a bore of 1 mm and a length of 13 mm has been fabricated and tested. Measurements showed that this actuator is able to generate a force density of more than 0.23 N mm-2 and a work density of 0.18 mJ mm-3 at a driving pressure of 550 kPa, which is remarkable considering the small dimensions of the actuator. © 2005 IOP Publishing Ltd.
Resumo:
Wireless Sensor Networks (WSNs) which utilise IEEE 802.15.4 technology operate primarily in the 2.4 GHz globally compatible ISM band. However, the wireless propagation channel in this crowded band is notoriously variable and unpredictable, and it has a significant impact on the coverage range and quality of the radio links between the wireless nodes. Therefore, the use of Frequency Diversity (FD) has potential to ameliorate this situation. In this paper, the possible benefits of using FD in a tunnel environment have been quantified by performing accurate propagation measurements using modified and calibrated off-the-shelf 802.15.4 based sensor motes in the disused Aldwych underground railway tunnel. The objective of this investigation is to characterise the performance of FD in this confined environment. Cross correlation coefficients are calculated from samples of the received power on a number of frequency channels gathered during the field measurements. The low measured values of the cross correlation coefficients indicate that applying FD at 2.4 GHz will improve link performance in a WSN deployed in a tunnel. This finding closely matches results obtained by running a computational simulation of the tunnel radio propagation using a 2D Finite-Difference Time-Domain (FDTD) method. ©2009 IEEE.
Resumo:
Highly porous ultralightweight cellular metal foams with open cells have attractive mechanical, thermal, acoustic and other properties and are currently being exploited for high-temperature applications (e.g. acoustic liners for combustion chambers). In such circumstances, thermal radiation in the metal foam becomes a significant mechanism of heat transfer. This paper presents results from experimental measurements on radiative transfer in Fe-Cr-Al-Y (a steel-based high-temperature alloy) foams having high porosity (95 per cent) and different cell sizes, manufactured at low cost from the sintering route. The spectral transmittance and reflectance are measured at different infrared wavelengths ranging from 2.5 to 50 μm, which are subsequently used to determine the extinction coefficient and foam emissivity. The results show that the spectral quantities are strongly dependent on the wavelength, particularly in the short-wavelength regime (less than 25 μm). While the extinction coefficient decreases with increasing cell size, the effect of cell size on foam reflectance is not significant. When the temperature is increased, the total extinction coefficient increases but the total reflectance decreases. The effective radiative conductivity of the metal foam is obtained by using the guarded hot-plate apparatus. With the porosity fixed, the effective radiative conductivity increases with increasing cell size and increasing temperature. © IMechE 2004.
Resumo:
The silver-catalysed oxidation of ethylene has been examined on the (III) face of a single crystal by a combination of electron spectroscopy and kinetic measurements at pressures of up to 50 Torr. The necessary and sufficient conditions for ethylene oxide formation are established, reaction intermediates are identified, kinetic isotope effects are observed and the role of Cs in modifying reaction selectivity is examined. It is shown that surface alkali exhibits opposite effects on the reactions which lead to the further oxidation of ethylene oxide and on the direct combustion of ethylene. © 1984.