24 resultados para Hyc Deposit
em Cambridge University Engineering Department Publications Database
Resumo:
Laser-assisted Cold Spray (LCS) is a new coating and fabrication process which combines the supersonic powder beam found in Cold Spray (CS) with laser heating of the deposition zone. LCS retains the advantages of CS; solid-state deposition, high build rate and the ability to deposit onto a range of substrates, while reducing operating costs by removing the need to use gas heating and helium as the process gas. Recent improvements in powder delivery and laser energy coupling to workpiece have been undertaken to improve deposition efficiency (DE) and build rate, while real-time temperature logging allows greater management of deposition conditions and deposit characteristics.
Resumo:
A simple way to deposit single-wall carbon nanotubes by CVD without the co-deposition of unwanted a-C was demonstrated. It was found that the catalytic deposition of SWCNTs occurs at a substantial rate compared to the self-pyrolysis of the hydrocarbon gas used.
Resumo:
The use of densification to improve the performance of shallow foundations during the centrifuge modeling of earthquake-induced liquefaction on level sand deposits is discussed. The densification of liquefiable ground provided protection against or significantly reduces liquefaction-related damage. Propagation of accelerations in the deposit exhibited considerable distinct features according to the relative density of the sand in the model. It was found that during the first couple of cycles, the dense soil amplifies the fundamental frequency component of the earthquake and preserves the higher frequency components.
Resumo:
A microelectronic parallel electron-beam lithography system using an array of field emitting microguns is currently being developed. This paper investigates the suitability of various carbon based materials for the electron source in this device, namely tetrahedrally bonded amorphous carbon (ta-C), nanoclustered carbon and carbon nanotubes. Ta-C was most easily integrated into a gated field emitter structure and various methods, such as plasma and heavy ion irradiation, were used to induce emission sites in the ta-C. However, the creation of such emission sites at desired locations appeared to be difficult/random in nature and thus the material was unsuitable for this application. In contrast, nanoclustered carbon material readily field emits with a high site density but the by-products from the deposition process create integration issues when using the material in a microelectronic gated structure. Carbon nanotubes are currently the most promising candidate for use as the emission source. We have developed a high yield and clean (amorphous carbon by-product free) PECVD process to deposit single free standing nanotubes at desired locations with exceptional uniformity in terms of nanotube height and diameter. Field emission from an array of nanotubes was also obtained. © 2001 Elsevier Science B.V.
Resumo:
A balanced planar r.f. powered magnetron sputter source has been used to deposit carbon nitride films from a graphite target under various conditions. Sample temperature, bias voltage and nitrogen content in the gas mixture were varied. The effects of oxygen, methane and ammonia on the film growth were also studied. Special attention was paid to the effects of the deposition parameters on the structure of the films, in particular the hybridisation of the carbon and nitrogen bonding. The chemical bonding of the carbon and nitrogen atoms was studied by electron energy loss spectroscopy (EELS). The chemical composition was evaluated by Rutherford back-scattering. The intensity of transitions to π antibonding orbitals, as revealed by EELS, was found to increase with the nitrogen content in the films. Ion bombardment of the films during growth and the addition of oxygen or hydrogen-rich gases further increased the proportion of π bonds of both the carbon and nitrogen atoms. It is suggested that the increase in the transitions to μ antibond orbitals is to be explained by increased sp2 or possibly sp hybridisation of the carbon and nitrogen. Also, the effect of annealing on the bonding of nitrogen rich films after deposition was tested. The changes caused by nitrogen and deposition conditions are consistent with previous reports on the formation of paracyanogen structures.
Resumo:
With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p-n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu2O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu2O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu2O films are reported. It is known from previously published work that the formation of pure Cu2O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu2O thin films (as opposed to CuO or mixed phase CuO/Cu2O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu2O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a controlled amount of oxygen, can produce good quality p-type transparent Cu2O films with electrical resistivity ranging from 102 to 104 Ω-cm, hole mobility of 1-10 cm2/V-s, and optical band-gap of 2.0-2.6 eV. These material properties make this low temperature deposited HiTUS Cu 2O film suitable for fabrication of p-type metal oxide thin film transistors. Furthermore, the capability to deposit Cu2O films with low film stress at low temperatures on plastic substrates renders this approach favourable for fabrication of flexible p-n junction solar cells. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Electrical double-layer capacitors owe their large capacitance to the formation of a double-layer at the electrode/electrolyte interface of high surface area carbon-based electrode materials. Greater electrical energy storage capacity has been attributed to transition metal oxides/nitrides that undergo fast, reversible redox reactions at the electrode surface (pseudo-capacitive behavior) in addition to forming electrical double-layers. Solution Precursor Plasma Spray (SPPS) has shown promise for depositing porous, high surface area transition metal oxides. This investigation explored the potential of SPPS to fabricate a-MoO 3 coatings with micro-structures suitable for use as super-capacitor electrodes. The effects of number of spray passes, spray distance, solution concentration, flow rate and spray velocity on the chemistry and micro-structure of the a-MoO 3 deposits were examined. DTA/TGA, SEM, XRD, and electrochemical analyses were performed to characterize the coatings. The results demonstrate the importance of post-deposition heating of the deposit by subsequent passes of the plasma on the coating morphology. © ASM International.
Resumo:
In an earthquake, underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. The uplift displacement of an underground structure in liquefiable soil deposit can be affected by the buried depth and size of the structure. Dynamic centrifuge tests have been carried out to investigate the influence of these factors by measuring the uplift displacement of shallow model circular structures. Ratios for the buried depth and diameter effects of the structure are introduced to compare the uplift displacement in different soil and earthquake conditions. With the depth effect and diameter effect ratios, the uplift displacement of a buoyant structure in liquefiable soil can also be estimated based on performance of similar structures in comparable soil condition and subjected to a similar earthquake event. © 2012 Elsevier Ltd.
Resumo:
Recent development of solution processable organic semiconductors delineates the emergence of a new generation of air-stable, high performance p- and n-type materials. This makes it indeed possible for printed organic complementary circuits (CMOS) to be used in real applications. The main technical bottleneck for organic CMOS to be adopted as the next generation organic integrated circuit is how to deposit and pattern both p- and n-type semiconductor materials with high resolutions at the same time. It represents a significant technical challenge, especially if it can be done for multiple layers without mask alignment. In this paper, we propose a one-step self-aligned fabrication process which allows the deposition and high resolution patterning of functional layers for both p- and n-channel thin film transistors (TFTs) simultaneously. All the dimensional information of the device components is featured on a single imprinting stamp, and the TFT-channel geometry, electrodes with different work functions, p- and n-type semiconductors and effective gate dimensions can all be accurately defined by one-step imprinting and the subsequent pattern transfer process. As an example, we have demonstrated an organic complementary inverter fabricated by 3D imprinting in combination with inkjet printing and the measured electrical characteristics have validated the feasibility of the novel technique. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Discrete inkspots of very high copper content were produced using inkjet technology. The reagent disproportionates at low temperature to deposit copper on glass. These deposits were shown to be more than 90% copper by weight by electron probe microanalysis and microbeam Rutherford backscatttering spectroscopy.
Resumo:
Quantitative microbeam Rutherford backscattering (RBS) analysis with a 1.5 MeV 4He+ beam has determined limits on the purity of copper deposited on glass with a novel inkjet process. A tetravinyl silane tetrakisCu(I) 1,1,1,5,5,5-hexafluoroacetylacetonate (TVST[Cu]hfac) complex was heated to 70 °C and jetted onto the glass substrate through a piezoelectric ceramic print head in droplets about 0.5 mm diameter. The substrate temperature was 150 °C. Solid well-formed deposits resulted which have a copper content greater than about 90% by weight. The RBS spectra were analysed objectively using the DataFurnace code, with the assumption that the deposit was CuOx, and the validity of different assumed values of x being tested. The assumptions and the errors of the analysis are critically evaluated. © 2002 Elsevier Science B.V. All rights reserved.
Effect of laser heating temperature on coating characteristics of Stellite 6 deposited by cold spray
Resumo:
Laser-assisted cold spray (LCS) is a new coating and fabrication process which combines some advantages of CS: solid-state deposition, retain their initial composition and high build rate with the ability to deposit materials which are either difficult or impossible to deposit using cold spray alone. Stellite 6 powder is deposited on medium carbon steels by LCS using N 2 as carrier gas pressure. The topography, cross section thickness, structure of the coatings is examined by SEM, optical microscopy, EDX. The results show that thickness and fluctuation of coating are improved with increased deposition site temperature. Porosity of coating is affected by N 2 and deposition site temperature. In this paper, it presents optimal coating using N 2 at a pressure of 3 MPa and temperature of 450°C and deposition site temperature of 1100°C.