35 resultados para Hybrid Floor Plate System
em Cambridge University Engineering Department Publications Database
Resumo:
Multi-objective Genetic Algorithms have become a popular choice to aid in optimising the size of the whole hybrid power train. Within these optimisation processes, other optimisation techniques for the control strategy are implemented. This optimisation within an optimisation requires many simulations to be run, so reducing the computational cost is highly desired. This paper presents an optimisation framework consisting of a series hybrid optimisation algorithm, in which a global search optimizes a submarine propulsion system using low-fidelity models and, in order to refine the results, a local search is used with high-fidelity models. The effectiveness of the Hybrid optimisation algorithm is demonstrated with the optimisation of a submarine propulsion system. © 2011 EPE Association - European Power Electr.
Resumo:
An existing hybrid finite element (FE)/statistical energy analysis (SEA) approach to the analysis of the mid- and high frequency vibrations of a complex built-up system is extended here to a wider class of uncertainty modeling. In the original approach, the constituent parts of the system are considered to be either deterministic, and modeled using FE, or highly random, and modeled using SEA. A non-parametric model of randomness is employed in the SEA components, based on diffuse wave theory and the Gaussian Orthogonal Ensemble (GOE), and this enables the mean and variance of second order quantities such as vibrational energy and response cross-spectra to be predicted. In the present work the assumption that the FE components are deterministic is relaxed by the introduction of a parametric model of uncertainty in these components. The parametric uncertainty may be modeled either probabilistically, or by using a non-probabilistic approach such as interval analysis, and it is shown how these descriptions can be combined with the non-parametric uncertainty in the SEA subsystems to yield an overall assessment of the performance of the system. The method is illustrated by application to an example built-up plate system which has random properties, and benchmark comparisons are made with full Monte Carlo simulations. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The ocean represents a huge energy reservoir since waves can be exploited to generate clean and renewable electricity; however, a hybrid energy storage system is needed to smooth the fluctuation. In this paper a hybrid energy storage system using a superconducting magnetic energy system (SMES) and Li-ion battery is proposed. The SMES is designed using Yttrium Barium Copper Oxide (YBCO) tapes, which store 60 kJ electrical energy. The magnet component of the SMES is designed using global optimization algorithm. Mechanical stress, coupled with electromagnetic field, is calculated using COMSOL and Matlab. A cooling system is presented and a suitable refrigerator is chosen to maintain a cold working temperature taking into account four heat sources. Then a microgrid system of direct drive linear wave energy converters is designed. The interface circuit connecting the generator and storage system is given. The result reveals that the fluctuated power from direct drive linear wave energy converters is smoothed by the hybrid energy storage system. The maximum power of the wave energy converter is 10 kW. © 2012 IEEE.
Resumo:
Against a background of increasing energy demand and rising fuel prices, hybrid-electric propulsion systems (HEPS) have the potential to significantly reduce fuel consumption in the aviation industry, particularly in the lighter sectors. By taking advantage of both Electric Motor (EM) and Internal Combustion Engine (ICE), HEPS provide not only a benefit in fuel saving but also a reduction in take-off noise and the emission levels. This research considers the design and sizing process of a hybrid-electric propulsion system for a single-seat demonstrator aircraft, the experimental derivation of the ICE map and the EM parameters. In addition to the experimental data, a novel modeling approach including several linked desktop PC software packages is presented to analyze and optimize hybrid-electric technology for aircraft. Further to the analysis of a parallel hybrid-electric, mid-scale aircraft, this paper also presents a scaling approach for a 20 kg UAV and a 50 tonne inter-city airliner. At the smaller scale, two different mission profiles are analyzed: an ISR mission profile, where the simulation routine optimizes the component size of the hybrid-electric propulsion system with respect to fuel saving, and a maximum duration profile; where the flight endurance is determined as a function of payload weight. At the larger scale, the performance of a 50 tonne inter-city airliner is modeled, based on a hybrid-electric gas-turbine, assuming a range of electric boost powers and battery masses.
Developing ISO 14649-based conversational programming system for multi-channel complex machine tools
Resumo:
A multi-channel complex machine tool (MCCM) is a versatile machining system equipped with more than two spindles and turrets for both turning and milling operations. Despite the potential of such a tool, the value of the hardware is largely dependent on how the machine tools are effectively programmed for machining. In this paper we consider a shop-floor programming system based on ISO 14649 (called e-CAM), the international standard for the interface between computer-aided manufacture (CAM) and computer numerical control (CNC). To be deployed in practical industrial usage a great deal of research has to be carried out. In this paper we present: 1) Design consideration for an e-CAM system, 2) The architecture design of e-CAM, 3) Major algorithms to fulfill the modules defined in the architecture, and 4) Implementation details.
Resumo:
This paper is concerned with the probability density function of the energy of a random dynamical system subjected to harmonic excitation. It is shown that if the natural frequencies and mode shapes of the system conform to the Gaussian Orthogonal Ensemble, then under common types of loading the distribution of the energy of the response is approximately lognormal, providing the modal overlap factor is high (typically greater than two). In contrast, it is shown that the response of a system with Poisson natural frequencies is not approximately lognormal. Numerical simulations are conducted on a plate system to validate the theoretical findings and good agreement is obtained. Simulations are also conducted on a system made from two plates connected with rotational springs to demonstrate that the theoretical findings can be extended to a built-up system. The work provides a theoretical justification of the commonly used empirical practice of assuming that the energy response of a random system is lognormal.