24 resultados para Humanitariansim and complex emergencies
em Cambridge University Engineering Department Publications Database
Resumo:
3D Direct Numerical Simulations (DNS) of autoignition in turbulent non-premixed flows between fuel and hotter air have been carried out using both 1-step and complex chemistry consisting of a 22 species n-heptane mechanism to investigate spontaneous ignition timing and location. The simple chemistry results showed that the previous findings from 2D DNS that ignition occurred at the most reactive mixture fraction (ξMR) and at small values of the conditional scalar dissipation rate (N|ξMR) are valid also for 3D turbulent mixing fields. Performing the same simulation many times with different realizations of the initial velocity field resulted in a very narrow statistical distribution of ignition delay time, consistent with a previous conjecture that the first appearance of ignition is correlated with the low-N content of the conditional probability density function of N. The simulations with complex chemistry for conditions outside the Negative Temperature Coefficient (NTC) regime show behaviour similar to the single-step chemistry simulations. However, in the NTC regime, the most reactive mixture fraction is very rich and ignition seems to occur at high values of scalar dissipation. Copyright © 2006 by ASME.
Resumo:
The dynamics of a fluid in a vertical tube, subjected to an oscillatory pressure gradient, is studied experimentally for both a Newtonian and a viscoelastic shear-thinning fluid. Particle image velocimetry is used to determine the two-dimensional velocity fields in the vertical plane of the tube axis, in a range of driving amplitudes from 0.8 to 2.5 mm and of driving frequencies from 2.0 to 11.5 Hz. The Newtonian fluid exhibits a laminar flow regime, independent of the axial position, in the whole range of drivings. For the complex fluid, instead, the parallel shear flow regime exhibited at low amplitudes [Torralba, Phys. Rev. E 72, 016308 (2005)] becomes unstable at higher drivings against the formation of symmetric vortices, equally spaced along the tube. At even higher drivings the vortex structure itself becomes unstable, and complex nonsymmetric structures develop. Given that inertial effects remain negligible even at the hardest drivings (Re < 10(-1)), it is the complex rheology of the fluid that is responsible for the instabilities observed. The system studied represents an interesting example of the development of shear-induced instabilities in nonlinear complex fluids in purely parallel shear flow.
Resumo:
The effect of displaying cytochromes from an amyloid fibre is modelled as perturbation of -strands in a bilayer of helical -sheets, thereby explaining the spiral morphology of decorated amyloid and the dynamic response of morphology to cytochrome conformation. The morphology of the modelled fibre, which consists of minimal energy assemblies of rigid building blocks containing two anisotropic interacting units, depends primarily on the rigid constraints between units rather than the soft interactions between them. The framework is a discrete version of the bilayered frustration principle that drives morphology in Bauhinia seedpods. We show that self-assembly of frustrated long range structures can occur if the building blocks themselves are internally frustrated, e.g. amyloid morphology is governed by the conformation of the misfolded protein nucleating the fibre. Our model supports the idea that any peptide sequence can form amyloid if bilayers can form first, albeit stabilised by additional material such as chaperones or cytochromes. Analysis of experimentally derived amyloid structures supports our conclusions and suggests a range of frustration effects, which natural amyloid fibres may exploit. From this viewpoint, amyloid appears as a molecular example of a more general universal bilayered frustration principle, which may have profound implications for materials design using fibrous systems. Our model provides quantitative guidance for such applications. The relevance to longer length scales was proved by designing the morphology of a series of macroscopic magnetic stacks. Finally, this work leads to the idea of mixing controlled morphologically defined species to generate higher-order assembly and complex functional behaviour. The systematic kinking of decorated fibres and the nested frustration of the Bauhinia seed pod are two outstanding examples.
Resumo:
Industrial emergence is a broad and complex domain, with relevant perspectives ranging in scale from the individual entrepreneur and firm with the business decisions and actions they make to the policies of nations and global patterns of industrialisation. The research described in this article has adopted a holistic approach, based on structured mapping methods, in an attempt to depict and understand the dynamics and patterns of industrial emergence across a broad spectrum from early scientific discovery to large-scale industrialisation. The breadth of scope and application has enabled a framework and set of four tools to be developed that have wide applicability. The utility of the approaches has been demonstrated through case studies and trials in a diverse range of industrial contexts. The adoption of such a broad scope also presents substantial challenges and limitations, with these providing an opportunity for further research. © IMechE 2013.
Resumo:
Despite many approaches proposed in the past, robotic climbing in a complex vertical environment is still a big challenge. We present here an alternative climbing technology that is based on thermoplastic adhesive (TPA) bonds. The approach has a great advantage because of its large payload capacity and viability to a wide range of flat surfaces and complex vertical terrains. The large payload capacity comes from a physical process of thermal bonding, while the wide applicability benefits from rheological properties of TPAs at higher temperatures and intermolecular forces between TPAs and adherends when being cooled down. A particular type of TPA has been used in combination with two robotic platforms, featuring different foot designs, including heating/cooling methods and construction of footpads. Various experiments have been conducted to quantitatively assess different aspects of the approach. Results show that an exceptionally high ratio of 500% between dynamic payloads and body mass can be achieved for stable and repeatable vertical climbing on flat surfaces at a low speed. Assessments on four types of typical complex vertical terrains with a measure, i.e., terrain shape index ranging from -0.114 to 0.167, return a universal success rate of 80%-100%. © 2004-2012 IEEE.
Resumo:
To manipulate an object skillfully, the brain must learn its dynamics, specifying the mapping between applied force and motion. A fundamental issue in sensorimotor control is whether such dynamics are represented in an extrinsic frame of reference tied to the object or an intrinsic frame of reference linked to the arm. Although previous studies have suggested that objects are represented in arm-centered coordinates [1-6], all of these studies have used objects with unusual and complex dynamics. Thus, it is not known how objects with natural dynamics are represented. Here we show that objects with simple (or familiar) dynamics and those with complex (or unfamiliar) dynamics are represented in object- and arm-centered coordinates, respectively. We also show that objects with simple dynamics are represented with an intermediate coordinate frame when vision of the object is removed. These results indicate that object dynamics can be flexibly represented in different coordinate frames by the brain. We suggest that with experience, the representation of the dynamics of a manipulated object may shift from a coordinate frame tied to the arm toward one that is linked to the object. The additional complexity required to represent dynamics in object-centered coordinates would be economical for familiar objects because such a representation allows object use regardless of the orientation of the object in hand.
Resumo:
Computer generated holography is an extremely demanding and complex task when it comes to providing realistic reconstructions with full parallax, occlusion, and shadowing. We present an algorithm designed for data-parallel computing on modern graphics processing units to alleviate the computational burden. We apply Gaussian interpolation to create a continuous surface representation from discrete input object points. The algorithm maintains a potential occluder list for each individual hologram plane sample to keep the number of visibility tests to a minimum.We experimented with two approximations that simplify and accelerate occlusion computation. It is observed that letting several neighboring hologramplane samples share visibility information on object points leads to significantly faster computation without causing noticeable artifacts in the reconstructed images. Computing a reduced sample set via nonuniform sampling is also found to be an effective acceleration technique. © 2009 Optical Society of America.
Resumo:
In previous papers (S. Adhikari and J. Woodhouse 2001 Journal of Sound and Vibration 243, 43-61; 63-88; S. Adhikari and J. Woodhouse 2002 Journal of Sound and Vibration 251, 477-490) methods were proposed to obtain the coefficient matrix for a viscous damping model or a non-viscous damping model with an exponential relaxation function, from measured complex natural frequencies and modes. In all these works, it has been assumed that exact complex natural frequencies and complex modes are known. In reality, this will not be the case. The purpose of this paper is to analyze the sensitivity of the identified damping matrices to measurement errors. By using numerical and analytical studies it is shown that the proposed methods can indeed be expected to give useful results from moderately noisy data provided a correct damping model is selected for fitting. Indications are also given of what level of noise in the measured modal properties is needed to mask the true physical behaviour.
Resumo:
Characterization of damping forces in a vibrating structure has long been an active area of research in structural dynamics. In spite of a large amount of research, understanding of damping mechanisms is not well developed. A major reason for this is that unlike inertia and stiffness forces it is not in general clear what are the state variables that govern the damping forces. The most common approach is to use `viscous damping' where the instantaneous generalized velocities are the only relevant state variables. However, viscous damping by no means the only damping model within the scope of linear analysis. Any model which makes the energy dissipation functional non-negative is a possible candidate for a valid damping model. This paper is devoted to develop methodologies for identification of such general damping models responsible for energy dissipation in a vibrating structure. The method uses experimentally identified complex modes and complex natural frequencies and does not a-priori assume any fixed damping model (eg., viscous damping) but seeks to determine parameters of a general damping model described by the so called `relaxation function'. The proposed method and several related issues are discussed by considering a numerical example of a linear array of damped spring-mass oscillators.
Resumo:
We present a novel, implementation friendly and occlusion aware semi-supervised video segmentation algorithm using tree structured graphical models, which delivers pixel labels alongwith their uncertainty estimates. Our motivation to employ supervision is to tackle a task-specific segmentation problem where the semantic objects are pre-defined by the user. The video model we propose for this problem is based on a tree structured approximation of a patch based undirected mixture model, which includes a novel time-series and a soft label Random Forest classifier participating in a feedback mechanism. We demonstrate the efficacy of our model in cutting out foreground objects and multi-class segmentation problems in lengthy and complex road scene sequences. Our results have wide applicability, including harvesting labelled video data for training discriminative models, shape/pose/articulation learning and large scale statistical analysis to develop priors for video segmentation. © 2011 IEEE.