8 resultados para Human body
em Cambridge University Engineering Department Publications Database
Resumo:
Cell monolayers line most of the surfaces and cavities in the human body. During development and normal physiology, monolayers sustain, detect and generate mechanical stresses, yet little is known about their mechanical properties. We describe a cell culture and mechanical testing protocol for generating freely suspended cell monolayers and examining their mechanical and biological response to uniaxial stretch. Cells are cultured on temporary collagen scaffolds polymerized between two parallel glass capillaries. Once cells form a monolayer covering the collagen and the capillaries, the scaffold is removed with collagenase, leaving the monolayer suspended between the test rods. The suspended monolayers are subjected to stretching by prying the capillaries apart with a micromanipulator. The applied force can be measured for the characterization of monolayer mechanics. Monolayers can be imaged with standard optical microscopy to examine changes in cell morphology and subcellular organization concomitant with stretch. The entire preparation and testing protocol requires 3-4 d.
Resumo:
Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.
Resumo:
In sensorimotor integration, sensory input and motor output signals are combined to provide an internal estimate of the state of both the world and one's own body. Although a single perceptual and motor snapshot can provide information about the current state, computational models show that the state can be optimally estimated by a recursive process in which an internal estimate is maintained and updated by the current sensory and motor signals. These models predict that an internal state estimate is maintained or stored in the brain. Here we report a patient with a lesion of the superior parietal lobe who shows both sensory and motor deficits consistent with an inability to maintain such an internal representation between updates. Our findings suggest that the superior parietal lobe is critical for sensorimotor integration, by maintaining an internal representation of the body's state.
Resumo:
This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.
Resumo:
Conventional models of bipedal walking generally assume rigid body structures, while elastic material properties seem to play an essential role in nature. On the basis of a novel theoretical model of bipedal walking, this paper investigates a model of biped robot which makes use of minimum control and elastic passive joints inspired from the structures of biological systems. The model is evaluated in simulation and a physical robotic platform by analyzing the kinematics and ground reaction force. The experimental results show that, with a proper leg design of passive dynamics and elasticity, an attractor state of human-like walking gait patterns can be achieved through extremely simple control without sensory feedback. The detailed analysis also explains how the dynamic human-like gait can contribute to adaptive biped walking. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Conventional models of bipedal walking generally assume rigid body structures, while elastic material properties seem to play an essential role in nature. On the basis of a novel theoretical model of bipedal walking, this paper investigates a model of biped robot which makes use of minimum control and elastic passive joints inspired from the structures of biological systems. The model is evaluated in simulation and a physical robotic platform with respect to the kinematics and the ground reaction force. The experimental results show that the behavior of this simple locomotion model shows a considerable similarity to that of human walking. © 2006 The authors.