9 resultados para Hot-spot –method
em Cambridge University Engineering Department Publications Database
Resumo:
Shortly after the loading of a pressurized water reactor (PWR) core, the axial power distribution in fresh fuel has already attained the characteristic, almost flat shape, typical of burned fuel. At beginning of cycle (BOC), however, the axial distribution is centrally peaked. In assemblies hosting uniform burnable boron rods, this BOC peaking is even more pronounced. A reduction in the axial peaking is today often achieved by shortening the burnable boron rods by some 30 cm at each edge. It is shown that a two-zone grading of the boron rod leads, in a representative PWR cycle, to a reduction of the hot-spot temperature of approximately 70 °C, compared with the nongraded case. However, with a proper three-zone grading of the boron rod, an additional 20 °C may be cut off the hot-spot temperature. Further, with a slightly skewed application of this three-zone grading, an additional 50 °C may be cut off. The representative PWR cycle studied was cycle 11 of the Indian Point 2 station, with a simplification in the number of fuel types and in the burnup distribution. The analysis was based on a complete three-dimensional burnup calculation. The code system was ELCOS, with BOXER as an assembly code for the generation of burnup-dependent cross sections and SILWER as a three-dimensional core code with thermal-hydraulic feedback.
Resumo:
This paper presents a combined experimental and numerical study on natural convection in open-celled metal foams. The effective thermal conductivities of steel alloy (FeCrAlY) samples with different relative densities and cell sizes are measured with the guarded-hot-plate method. To examine the natural convection effect, the measurements are conducted under both vacuum and ambient conditions for a range of temperatures. The experimental results show that natural convection is very significant, accounting for up to 50% of the effective foam conductivity obtained at ambient pressure. This has been attributed to the high porosity (ε > 0.9) and inter-connected open cells of the metal foams studied. Morphological parameters characterizing open-celled FeCrAlY foams are subsequently identified and their cross-relationships are built. The non-equilibrium two-equation energy transfer model is employed, and selected calculations show that the non-equilibrium effect between the solid foam skeleton and air is significant. The study indicates that the combined parameter, i.e., the porous medium Rayleigh number, is no longer appropriate to correlate natural convection by itself when the Darcy number is sufficiently large as in the case of natural convection in open-celled metal foams. Good agreement between model predictions and experimental measurements is obtained. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Avalanche multiplication has been one of the major destructive failure mechanisms in IGBTs; in order to avoid operating an IGBT under abnormal conditions, it is desirable to develop peripheral protecting circuits monolithically integrated without compromising the operation and performance of the IGBT. In this paper, a monolithically integrated avalanche diode (D av) for 600V Trench IGBT over-voltage protection is proposed. The mix-mode transient simulation proves the clamping capability of the D av when the IGBT is experiencing over-voltage stress in unclamped inductive switching (UIS) test. The spread of avalanche energy, which prevents hot-spot formation, through the help of the avalanche diode feeding back a large fraction of the avalanche current to a gate resistance (R G) is also explained. © 2011 IEEE.
Resumo:
Relatively new in the UK, soil mix technology applied to the in-situ remediation of contaminated land involves the use of mixing tools and additives to construct permeable reactive in-ground barriers and low-permeability containment walls and for hot-spot soil treatment by stabilisation/ solidification. It is a cost effective and versatile approach with numerous environmental advantages. Further commercial advantages can be realised by combining this with ground improvement through the development of a single integrated soil mix technology system which is the core objective of Project SMiRT (Soil Mix Remediation Technology). This is a large UK-based R&D project involving academia-industry collaboration with a number of tasks including equipment development, laboratory treatability studies, field trials, stakeholder consultation and dissemination activities. This paper presents aspects of project SMiRT relating to the laboratory treatability study work leading to the design of the field trials. © 2012 American Society of Civil Engineers.
Resumo:
Accurate predictions of combustor hot streak migration enable the turbine designer to identify high-temperature regions that can limit component life. It is therefore important that these predictions are achieved within the short time scales of a design process. This article compares temperature measurements of a circular hot streak through a turning duct and a research turbine with predictions using a three-dimensional Reynolds-averaged Navier-Stokes solver. It was found that the mixing length turbulence model did not predict the hot streak dissipation accurately. However, implementation of a very simple model of the free stream turbulence (FST) significantly improved the exit temperature predictions on both the duct and research turbine. One advantage of the simple FST model described over more complex alternatives is that no additional equations are solved. This makes the method attractive for design purposes, as it is not associated with any increase in computational time.
Resumo:
This paper describes a method of improving the cooling of the hub region of high-pressure turbine (HPT) rotor by making better use of the unsteady coolant flows originating from the upstream vane. The study was performed computationally on an engine HPT stage with representative inlet hot streak and vane coolant conditions. An experimental validation study of hot streak migration was undertaken on two low-speed test facilities. The unsteady mechanisms that transport hot and cold fluid within the rotor hub region are first examined. It was found that vortex-blade interaction dominated the unsteady transport of hot and cold fluid in the rotor hub region. This resulted in the transport of hot fluid onto the rotor hub and pressure surface, causing a peak in the surface gas temperatures. The vane film coolant was found to have only a limited effect in cooling this region. A new cooling configuration was thus examined which exploits the unsteadiness in rotor hub to aid transport of coolant towards regions of high rotor surface temperatures. The new coolant was introduced from a slot upstream of the vane. This resulted in the feed of slot coolant at a different phase and location relative to the vane film coolant within the rotor. The slot coolant was entrained into the unsteady rotor secondary flows and transported towards the rotor hub-pressure surface region. The slot coolant reduced the peak time-averaged rotor temperatures by a similar amount as the vane film coolant despite having only a sixth of the coolant mass flow. Copyright © 2008 by ASME.
Resumo:
Computations are made of a short cowl coflowing jet nozzle with a bypass ratio 8 : 1. The core flow is heated, making the inlet conditions reminiscent of those for a real engine. A large eddy resolving approach is used with a 12 × 106 cell mesh. Since the code being used tends towards being dissipative the sub-grid scale (SGS) model is abandoned giving what can be termed Numerical Large Eddy Simulation (NLES). To overcome near wall modelling problems a hybrid NLES-RANS (Reynolds Averaged Navier-Stokes) related method is used. For y+ ≤ 60 a κ-l model is used. Blending between the two regions makes use of the differential Hamilton-Jabobi (HJ) equation, an extension of the eikonal equation. Results show encouraging agreement with existing measurements of other workers. The eikonal equation is also used for acoustic ray tracing to explore the effect of the mean flow on acoustic ray trajectories, thus yielding a coherent solution strategy. Copyright © 2011 by ASME.
Resumo:
Physical connection and disconnection control has practical meanings for robot applications. Compared to conventional connection mechanisms, bonding involving a thermal process could provide high connection strength, high repeatability, and power-free connection maintenance, etc. In terms of disconnection, an established bond can be easily weakened with a temperature rise of the material used to form the bond. Hot melt adhesives (HMAs) are such material that can form adhesive bonds with any solid surfaces through a thermally induced solidification process. This paper proposes a novel control method for automatic connection and disconnection based on HMAs. More specifically, mathematical models are first established to describe the flowing behavior of HMAs at higher temperatures, as well as the temperature-dependent strength of an established HMA bond. These models are then validated with a specific type of HMA in a minimalistic robot setup equipped with two mechatronic devices for automated material handling. The validated models are eventually used for determining open parameters in a feedback controller for the robot to perform a pick-and-place task. Through a series of trials with different wooden and aluminum parts, we evaluate the performance of the automatic connection and disconnection methods in terms of speed, energy consumption, and robustness. © 1996-2012 IEEE.