16 resultados para Hot spots, levels of delinquency, citizen’s security, critical areas, Bogotá.
em Cambridge University Engineering Department Publications Database
Resumo:
Transport critical current measurements have been carried out on melt-processed thick films of YBa2Cu3O7-δ on yttria-stabilized zirconia in fields of up to 8 T both within grains and across grain boundaries. These measurements yield Jc values of ∼3000 A cm-2 at 4.2 K and zero magnetic field and 400 A cm -2 at 77 K and zero magnetic field, taking the entire sample width as the definitive dimension. Optical and scanning electron microscopy reveals that the thick-film grains consist typically of a central "hub" region ∼50 μm in diameter, which is well connected to radial subgrains or "spokes" which extend ∼1 mm to define the complete grain structure. Attempts have been made to correlate the transport measurements of inter- and intra-hub-and-spoke (H-S) critical current with values of this parameter derived previously from magnetization measurements. Analysis of the transport measurements indicates that current flow through H-S grains is constrained to paths along the spokes via the grain hub. Taking the size of the hub as the definitive dimension yields an intra-H-S grain Jc of ∼60 000 A cm-2 at 4.2 K and 0 T, which is in reasonable agreement with the magnetization data. Experiments in which the hub is removed from individual grains confirm that this feature determines critically the J c of the film.
Resumo:
The chorioamnion is the membrane that surrounds the fetus during gestation. Normally, it must remain intact for the duration of pregnancy, 37-42 weeks, and only rupture during or just before labour and delivery of the fetus. In a significant number (3%) of all births, this does not happen, and membranes rupture before term, resulting in preterm birth and significant perinatal morbidity. It is known that the material properties of chorioamnion may play a major role in mechanical rupture; a number of studies have been undertaken to characterise the physical nature of chorioamnion and examine factors that may predispose to rupture. However, the existing literature is inconsistent in its choice of both physical testing methods and data analysis techniques, motivating the current review. Experimental data from a large number of chorioamnion mechanical studies were collated, and data were converted to standard engineering quantities. The failure strength of the chorioamnion membrane was found consistently to value approximately 0.9 MPa. It is hoped that past and future studies of membrane mechanics can provide insight into the role of chorioamnion in labour and delivery. In addition, biomechanical approaches can help elucidate the potential causes of early rupture, and suggest future protocols or treatments that could both diagnose and prevent its occurrence. © 2009 Elsevier Ireland Ltd.
Resumo:
In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a "break-even clearance" at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the "offset loss". This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model. © 2010 by ASME.
Resumo:
Capability loss simulators give designers a brief experience of some of the functional effects of capability loss. They are an effective method of helping people to understand the impact of capability loss on product use. However, it is also important that designers know what levels of loss are being simulated and how they relate to the user population. The study in this paper tested the Cambridge Simulation Glasses with 25 participants to determine the effect of different numbers of glasses on a person's visual acuity. This data is also related to the glasses' use in usability assessment. A procedure is described for determining the number of simulator glasses with which the visual detail on a product is just visible. This paper then explains how to calculate the proportion of the UK population who would be unable to distinguish that detail.
Resumo:
In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction, the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a "break-even clearance" at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the "offset loss." This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model. © 2014 by ASME.