18 resultados para Horizontal surface phytoplankton distribution

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper discusses measurements of heat transfer obtained from the inside surface of the peripheral shroud. The experiments were carried out on a rotating cavity, comprising two 0.985-m-dia disks, separated by an axial gap of 0.065 m and bounded at the circumference by a carbon fiber shroud. Tests were conducted with a heated shroud and either unheated or heated disks. When heated, the disks had the same temperature level and surface temperature distribution. Two different temperature distributions were tested; the surface temperature either increased, or decreased with radius. The effects of disk, shroud, and air temperature levels were also studied. Tests were carried out for the range of axial throughflow rates and speeds: 0.0025 ≤ m ≤ 0.2 kg/s and 12.5 ≤ Ω ≤ 125 rad/s, respectively. Measurements were also made of the temperature of the air inside the cavity. The shroud Nusselt numbers are found to depend on a Grashof number, which is defined using the centripetal acceleration. Providing the correct reference temperature is used, the measured Nusselt numbers also show similarity to those predicted by an established correlation for a horizontal plate in air. The heat transfer from the shroud is only weakly affected by the disk surface temperature distribution and temperature level. The heat transfer from the shroud appears to be affected by the Rossby number. A significant enhancement to the rotationally induced free convection occurs in the regions 2 ≤ Ro ≤ 4 and Ro ≥ 20. The first of these corresponds to a region where vortex breakdown has been observed. In the second region, the Rossby number may be sufficiently large for the central throughflow to affect the shroud heat transfer directly. Heating the shroud does not appear to affect the heat transfer from the disks significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A programme of research on the seismic behaviour of retaining walls has been under way at Cambridge since 1981. Centrifuge tests have presently been conducted both on cantilever walls and isolated mass walls, retaining dry sands of varying grading and density. This paper is devoted to the modelling of fixed-base cantilever walls retaining Leighton Buzzard (14/25) sand of relative density 99% with a horizontal surface level with the crest of the wall. The base of the centrifuge container was used to fix the walls, and to provide a rigid lower boundary for the sand. No attempt was made to inhibit the propagation of compression waves from the side of the container opposite the inside face of the model wall. The detailed analysis of dynamic deflections and bending moments was made difficult by the anelastic nature of reinforced concrete, and the difficulty of measuring bending strains thereon. A supplementary programme of well-instrumented tests on Dural walls of similar stiffness, including the modelling of models, was therefore carried out. Refs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A heated rotating cavity with an axial throughflow of cooling air is used as a model for the flow in the cylindrical cavities between adjacent discs of a high-pressure gas-turbine compressor. In an engine the flow is expected to be turbulent, the limitations of this laminar study are fully realised but it is considered an essential step to understand the fundamental nature of the flow. The three-dimensional, time-dependent governing equations are solved using a code based on the finite volume technique and a multigrid algorithm. The computed flow structure shows that flow enters the cavity in one or more radial arms and then forms regions of cyclonic and anticyclonic circulation. This basic flow structure is consistent with existing experimental evidence obtained from flow visualization. The flow structure also undergoes cyclic changes with time. For example, a single radial arm, and pair of recirculation regions can commute to two radial arms and two pairs of recirculation regions and then revert back to one. The flow structure inside the cavity is found to be heavily influenced by the radial distribution of surface temperature imposed on the discs. As the radial location of the maximum disc temperature moves radially outward, this appears to increase the number of radial arms and pairs of recirculation regions (from one to three for the distributions considered here). If the peripheral shroud is also heated there appear to be many radial arms which exchange fluid with a strong cyclonic flow adjacent to the shroud. One surface temperature distribution is studied in detail and profiles of the relative tangential and radial velocities are presented. The disc heat transfer is also found to be influenced by the disc surface temperature distribution. It is also found that the computed Nusselt numbers are in reasonable accord over most of the disc surface with a correlation found from previous experimental measurements. © 1994, MCB UP Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of streamwise slots on the interaction of a normal shock wave / turbulent boundary layer has been investigated experimentally at a Mach number of 1.3. The surface pressure distribution for the controlled interaction was found to be significantly smeared, featuring a distinct plateau. This was due to a change in shock structure from a typical unseparated normal shock wave boundary layer interaction to a large bifurcated Lambda type shock pattern. Boundary layer velocity measurements downstream of the slots revealed a strong spanwise variation of boundary layer properties whereas the modified shock structure was relatively twodimensional. Oil flow visualisation indicated that in the presence of slots the boundary layer surface flow was highly three dimensional and confirmed that the effect of slots was mainly due to suction and blowing similar to that for passive control with uniform surface ventilation. Three hole probe measurements confirmed that the boundary layer was three dimensional and that the slots introduced vortical motion into the flowfield. Results indicate that when applied to an aerofoil, the control device has the potential to reduce wave drag while incurring only small viscous penalties. The introduction of streamwise vorticity may also be beneficial to delay trailing edge separation and the device is thought to be capable of postponing buffet onset. © 2001 by A N Smith.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Noise and vibration from underground railways is a major source of disturbance to inhabitants near subways. To help designers meet noise and vibration limits, numerical models are used to understand vibration propagation from these underground railways. However, the models commonly assume the ground is homogeneous and neglect to include local variability in the soil properties. Such simplifying assumptions add a level of uncertainty to the predictions which is not well understood. The goal of the current paper is to quantify the effect of soil inhomogeneity on surface vibration. The thin-layer method (TLM) is suggested as an efficient and accurate means of simulating vibration from underground railways in arbitrarily layered half-spaces. Stochastic variability of the soils elastic modulus is introduced using a KL expansion; the modulus is assumed to have a log-normal distribution and a modified exponential covariance kernel. The effect of horizontal soil variability is investigated by comparing the stochastic results for soils varied only in the vertical direction to soils with 2D variability. Results suggest that local soil inhomogeneity can significantly affect surface velocity predictions; 90 percent confidence intervals showing 8 dB averages and peak values up to 12 dB are computed. This is a significant source of uncertainty and should be considered when using predictions from models assuming homogeneous soil properties. Furthermore, the effect of horizontal variability of the elastic modulus on the confidence interval appears to be negligible. This suggests that only vertical variation needs to be taken into account when modelling ground vibration from underground railways. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the measurement and simulation of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed on the rough plates which also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit satisfactory similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. However, the simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that the Mott metal-insulator transition (MIT) in single crystalline VO(2) nanowires is strongly mediated by surface stress as a consequence of the high surface area to volume ratio of individual nanowires. Further, we show that the stress-induced antiferromagnetic Mott insulating phase is critical in controlling the spatial extent and distribution of the insulating monoclinic and metallic rutile phases as well as the electrical characteristics of the Mott transition. This affords an understanding of the relationship between the structural phase transition and the Mott MIT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the effect of the state of the inlet boundary layer (laminar or turbulent) on the structure of the endwall flow on two different profiles of low-pressure (LP) turbine blades (solid thin and hollow thick). At present the state of the endwall boundary layer at the inlet of a real LP turbine is not known. The intention of this paper is to show that, for different designs of LP turbine, the state of the inlet boundary layer affects the performance of the blade in very different ways. The testing was completed at low speed in a linear cascade using area traversing, flow visualization and static pressure measurements. The paper shows that, for a laminar inlet boundary layer, the two profiles have a similar loss distribution and structure of endwall flow. However, for a turbulent inlet boundary layer the two profiles are shown to differ significantly in both the total loss and endwall flow structure. The pressure side separation bubble on the solid thin profile is shown to interact with the passage vortex, causing a higher endwall loss than that measured on the hollow thick profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field of motor control, two hypotheses have been controversial: whether the brain acquires internal models that generate accurate motor commands, or whether the brain avoids this by using the viscoelasticity of musculoskeletal system. Recent observations on relatively low stiffness during trained movements support the existence of internal models. However, no study has revealed the decrease in viscoelasticity associated with learning that would imply improvement of internal models as well as synergy between the two hypothetical mechanisms. Previously observed decreases in electromyogram (EMG) might have other explanations, such as trajectory modifications that reduce joint torques. To circumvent such complications, we required strict trajectory control and examined only successful trials having identical trajectory and torque profiles. Subjects were asked to perform a hand movement in unison with a target moving along a specified and unusual trajectory, with shoulder and elbow in the horizontal plane at the shoulder level. To evaluate joint viscoelasticity during the learning of this movement, we proposed an index of muscle co-contraction around the joint (IMCJ). The IMCJ was defined as the summation of the absolute values of antagonistic muscle torques around the joint and computed from the linear relation between surface EMG and joint torque. The IMCJ during isometric contraction, as well as during movements, was confirmed to correlate well with joint stiffness estimated using the conventional method, i.e., applying mechanical perturbations. Accordingly, the IMCJ during the learning of the movement was computed for each joint of each trial using estimated EMG-torque relationship. At the same time, the performance error for each trial was specified as the root mean square of the distance between the target and hand at each time step over the entire trajectory. The time-series data of IMCJ and performance error were decomposed into long-term components that showed decreases in IMCJ in accordance with learning with little change in the trajectory and short-term interactions between the IMCJ and performance error. A cross-correlation analysis and impulse responses both suggested that higher IMCJs follow poor performances, and lower IMCJs follow good performances within a few successive trials. Our results support the hypothesis that viscoelasticity contributes more when internal models are inaccurate, while internal models contribute more after the completion of learning. It is demonstrated that the CNS regulates viscoelasticity on a short- and long-term basis depending on performance error and finally acquires smooth and accurate movements while maintaining stability during the entire learning process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

D Liang from Cambridge University explains the shallow water equations and their applications to the dam-break and other steep-fronted flow modeling. They assume that the horizontal scale of the flow is much greater than the vertical scale, which means the flow is restricted within a thin layer, thus the vertical momentum is insignificant and the pressure distribution is hydrostatic. The left hand sides of the two momentum equations represent the acceleration of the fluid particle in the horizontal plane. If the fluid acceleration is ignored, then the two momentum equations are simplified into the so-called diffusion wave equations. In contrast to the SWEs approach, it is much less convenient to model floods with the Navier-Stokes equations. In conventional computational fluid dynamics (CFD), cumbersome treatments are needed to accurately capture the shape of the free surface. The SWEs are derived using the assumptions of small vertical velocity component, smooth water surface, gradual variation and hydrostatic pressure distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this report is to compare the trapped field distribution under a local heating created at the sample edge for different sample morphologies. Hall probe mappings of the magnetic induction trapped in YBCO bulk samples maintained out of thermal equilibrium were performed on YBCO bulk single domains, YBCO single domains with regularly spaced hole arrays, and YBCO superconducting foams. The capability of heat draining was quantified by two criteria: the average induction decay and the size of the thermally affected zone caused by a local heating of the sample. Among the three investigated sample shapes, the drilled single domain displays a trapped induction which is weakly affected by the local heating while displaying a high trapped field. Finally, a simple numerical modelling of the heat flux spreading into a drilled sample is used to suggest some design rules about the hole configuration and their size. © 2005 IOP Publishing Ltd.