7 resultados para Historic Protestantism
em Cambridge University Engineering Department Publications Database
Resumo:
The north-south line in Amsterdam is being built underneath the historic centre of the city. Three deep stations are being constructed in deep excavations supported by diaphragm walls. During the excavation for Vijzelgracht station, leakage through the wall resulted in large settlements and damage to historic buildings, which threatened continuation of the project. The authors analysed the cause of the leakage and the damage to the buildings. With the application of robust preventative measures at two of the deep excavations it was possible to continue the project. This paper reports on the cause of the events, the damage to the buildings and the counter-measures taken. It includes lessons learned for the project and for the foundations industry.
Resumo:
Stone masonry spires are vulnerable to seismic loading. Computational methods are often used to predict the dynamic linear elastic response of masonry towers and spires, but this approach is only applicable until the first masonry joint begins to open, limiting the ability to predict collapse. In this paper, analytical modeling is used to investigate the uplift, rocking and collapse of stone spires. General equations for static equilibrium of the spire under lateral acceleration are first presented, and provide a reasonable lower bound for predicting collapse. The dynamic response is then considered through elastic modal analysis and rigid body rocking. Together, these methods are used to provide uplift curves and single impulse overturning collapse curves for a complete range of possible spire geometries. Results are used to evaluate the historic collapse of two specific stone spires. © 2012 Elsevier Ltd.
Resumo:
The Mw= 7.2 Haiti earthquake of 12th January 2010 caused extensive damage to buildings and other infrastructure in the epicentral region in and around Port-au-Prince. The Earthquake Engineering Field Investigation Team (EEFIT), which is based in the United Kingdom, organised a field mission to Haiti with the authors as the team members. The paper presents the geotechnical findings of the team including those relating to soil liquefaction and lateral spreading and discusses the performance of buildings, including historic buildings, and bridges. Unprecedented use was made of damage assessments made from remote images (i. e. images taken from satellites and aircraft) when planning the post-earthquake relief effort in Haiti and a principal objective of the team was to evaluate the accuracy of such assessments. Accordingly, 142 buildings in Port-au-Prince were inspected in the field by the EEFIT team; damage assessments had previously been made using remote images for all these buildings. On the basis of this survey, the tendency of remote assessments to underestimate damage was confirmed; it was found that the underestimate applied to assessments based on oblique images using the relatively new technique of Pictometry, as well as those based on vertical images, although to a lesser degree. The paper also discusses the distribution of damage in Port-au-Prince, which was found to be strongly clustered in ways that appear not to have been completely explained. © 2012 Springer Science+Business Media B.V.
Resumo:
Flow measurement data at the district meter area (DMA) level has the potential for burst detection in the water distribution systems. This work investigates using a polynomial function fitted to the historic flow measurements based on a weighted least-squares method for automatic burst detection in the U.K. water distribution networks. This approach, when used in conjunction with an expectationmaximization (EM) algorithm, can automatically select useful data from the historic flow measurements, which may contain normal and abnormal operating conditions in the distribution network, e.g., water burst. Thus, the model can estimate the normal water flow (nonburst condition), and hence the burst size on the water distribution system can be calculated from the difference between the measured flow and the estimated flow. The distinguishing feature of this method is that the burst detection is fully unsupervised, and the burst events that have occurred in the historic data do not affect the procedure and bias the burst detection algorithm. Experimental validation of the method has been carried out using a series of flushing events that simulate burst conditions to confirm that the simulated burst sizes are capable of being estimated correctly. This method was also applied to eight DMAs with known real burst events, and the results of burst detections are shown to relate to the water company's records of pipeline reparation work. © 2014 American Society of Civil Engineers.
Resumo:
One of the main causes of failure of historic buildings is represented by the differential settlements of foundations. Finite element analysis provides a useful tool for predicting the consequences of given ground displacements in terms of structural damage and also assesses the need of strengthening techniques. The actual damage classification for buildings subject to settlement bases the assessment of the potential damage on the expected crack pattern of the structure. In this paper, the correlation between the physical description of the damage in terms of crack width and the interpretation of the finite element analysis output is analyzed. Different discrete and continuum crack models are applied to simulate an experiment carried on a scale model of a masonry historical building, the Loggia Palace in Brescia (Italy). Results are discussed and a modified version of the fixed total strain smeared crack model is evaluated, in order to solve the problem related to the calculation of the exact crack width.