55 resultados para High metal loading
em Cambridge University Engineering Department Publications Database
Resumo:
Up to 50% increase in the power density of the existing pressurized water reactor (PWR)-type reactors can be achieved by the use of internally and externally cooled annular fuel geometry. As a result, the accumulated stock-piles of Pu, especially if incorporated infertile-free inert matrix, can be burnt at a substantially higher rate as compared with the conventional mixed oxide-fueled reactors operating at standard power density. In this work, we explore the basic feasibility of a PWR core fully loaded with Pu incorporated infertile-free fuel of annular internally and externally cooled geometry and operating at 150% of nominal power density. We evaluate basic burnable poison designs, fuel management strategies, and reactivity feedback coefficients. The three-dimensional full core neutronic analysis performed with Studsvik Core Management System showed that the design of such a Pu-loaded annular fuel core is feasible but significantly more challenging than the Pu fertile-free core with solid fuel pins operating at nominal power density. The main difficulty arises from the fact that the annular fuel core requires at least 50% higher initial Pu loading in order to maintain the standard fuel cycle length of 18 months. Such a high Pu loading results in hardening of the neutron spectrum and consequent reduction in reactivity worth of all reactivity control mechanisms and, in some cases, positive moderator temperature coefficient (MTC). The use of isotopically enriched Gd and Er burnable poisons was found to be beneficial with respect to maximizing Pu burnup and reducing power peaking factors. Overall, the annular fertile-free Pu-loaded high-power-density core appears to be feasible, although it still has relatively high power peaking and potential for slightly positive MTC at beginning of cycle. However, we estimate that limiting the power density to 140% of the nominal case would assure acceptable core power peaking and negative MTC at all times during the cycle.
Resumo:
The heat dissipation capability of highly porous cellular metal foams with open cells subject to forced air convection is studied using a combined experimental and analytical approach. The cellular morphologies of six FeCrAlY (an iron-based alloy) foams and six copper alloy foams with a range of pore sizes and porosities are quantified with the scanning electronic microscope and image analysis. Experimental measurements on pressure drop and heat transfer for copper foams are carried out. A numerical model for forced convection across open-celled metal foams is subsequently developed, and the predictions are compared with those measured. Reasonably good agreement with test data is obtained, given the complexity of the cellular foam morphology and the associated momentum/energy transport. The results show that cell size has a more significant effect on the overall heat transfer than porosity. An optimal porosity is obtained based on the balance between pressure drop and overall heat transfer, which decreases as the Reynolds number is increased.
Resumo:
We have studied the response of a sol-gel based TiO(2), high k dielectric field effect transistor structure to microwave radiation. Under fixed bias conditions the transistor shows frequency dependent current fluctuations when exposed to continuous wave microwave radiation. Some of these fluctuations take the form of high Q resonances. The time dependent characteristics of these responses were studied by modulating the microwaves with a pulse signal. The measurements show that there is a shift in the centre frequency of these high Q resonances when the pulse time is varied. The measured lifetime of these resonances is high enough to be useful for non-classical information processing.
Resumo:
Chemical looping combustion (CLC) is a novel combustion technology that involves cyclic reduction and oxidation of oxygen storage materials to provide oxygen for the combustion of fuels to CO2 and H2O, whilst giving a pure stream of CO2 suitable for sequestration or utilisation. Here, we report a method for preparing of oxygen storage materials from layered double hydroxides (LDHs) precursors and demonstrate their applications in the CLC process. The LDHs precursor enables homogeneous mixing of elements at the molecular level, giving a high degree of dispersion and high-loading of active metal oxide in the support after calcination. Using a Cu-Al LDH precursor as a prototype, we demonstrate that rational design of oxygen storage materials by material chemistry significantly improved the reactivity and stability in the high temperature redox cycles. We discovered that the presence of sodium-containing species were effective in inhibiting the formation of copper aluminates (CuAl2O4 or CuAlO 2) and stabilising the copper phase in an amorphous support over multiple redox cycles. A representative nanostructured Cu-based oxygen storage material derived from the LDH precursor showed stable gaseous O2 release capacity (∼5 wt%), stable oxygen storage capacity (∼12 wt%), and stable reaction rates during reversible phase changes between CuO-Cu 2O-Cu at high temperatures (800-1000 °C). We anticipate that the strategy can be extended to manufacture a variety of metal oxide composites for applications in novel high temperature looping cycles for clean energy production and CO2 capture. © The Royal Society of Chemistry 2013.
Resumo:
The three-dimensional spatial distribution of Al in the high-k metal gates of metal-oxide-semiconductor field-effect-transistors is measured by atom probe tomography. Chemical distribution is correlated with the transistor voltage threshold (VTH) shift generated by the introduction of a metallic Al layer in the metal gate. After a 1050 °C annealing, it is shown that a 2-Å thick Al layer completely diffuses into oxide layers, while a positive VTH shift is measured. On the contrary, for thicker Al layers, Al precipitation in the metal gate stack is observed and the VTH shift becomes negative. © 2012 American Institute of Physics.