108 resultados para Herbicide resistance

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rates of erosive wear have been measured for a series of eight polyester-based one-component castable polyurethane elastomers, with widely varying mechanical properties. Erosion tests were conducted with airborne silica sand, 120μm in particle size, at an impact velocity of 50 ms-1 and impact angles of 30° and 90°. For these materials, which all showed similar values of rebound resilience, the erosion rate increased with increasing hardness, tensile modulus and tensile strength. These findings are at variance with those expected for wear by abrasion, perhaps because of differences in the strain rate or strain levels imposed on the elastomer during erosion and abrasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Dugdale-type cohesive zone model is used to predict the mode I crack growth resistance (R-curve) of metallic foams, with the fracture process characterized by an idealized traction-separation law that relates the crack surface traction to crack opening displacement. A quadratic yield function, involving the von Mises effective stress and mean stress, is used to account for the plastic compressibility of metallic foams. Finite element calculations are performed for the crack growth resistance under small scale yielding and small scale bridging in plane strain, with K-field boundary conditions. The following effects upon the fracture process are quantified: material hardening, bridging strength, T-stress (the non-singular stress acting parallel to the crack plane), and the shape of yield surface. To study the failure behaviour and notch sensitivity of metallic foams in the presence of large scale yielding, a study is made for panels embedded with either a centre-crack or an open hole and subjected to tensile stressing. For the centre-cracked panel, a transition crack size is predicted for which the fracture response switches from net section yielding to elastic-brittle fracture. Likewise, for a panel containing a centre-hole, a transition hole diameter exists for which the fracture response switches from net section yielding to a local maximum stress criterion at the edge of the hole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-implant adhesive strength is important for prostheses. In this paper, an investigation is described into the adhesion of bovine chondrocytes to Ti6Al4V-based substrates with different surface roughnesses and compositions. Cells were cultured for 2 or 5 days, to promote adhesion. The ease of cell removal was characterised, using both biochemical (trypsin) and mechanical (accelerated buoyancy and liquid flow) methods. Computational fluid dynamics (CFD) modelling has been used to estimate the shear forces applied to the cells by the liquid flow. A comparison is presented between the ease of cell detachment indicated using these methods, for the three surfaces investigated. © 2008 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable estimates for the maximum available uplift resistance from the backfill soil are essential to prevent upheaval buckling of buried pipelines. The current design code DNV RP F110 does not offer guidance on how to predict the uplift resistance when the cover:pipe diameter (H/D) ratio is less than 2. Hence the current industry practice is to discount the shear contribution from uplift resitance for design scenarios with H/D ratios less than 1. The necessity of this extra conservatism is assessed through a series of full-scale and centrifuge tests, 21 in total, at the Schofield Centre, University of Cambridge. Backfill types include saturated loose sand, saturated dense sand and dry gravel. Data revealed that the Vertical Slip Surface Model remains applicable for design scenarios in loose sand, dense sand and gravel with H/D ratios less than 1, and that there is no evidence that the contribution from shear should be ignored at these low H/D ratios. For uplift events in gravel, the shear component seems reliable if the cover is more than 1-2 times the average particle size (D50), and more research effort is currenty being carried out to verify this conclusion. Strain analysis from the Particle Image Velocimetry (PIV) technique proves that the Vertical Slip Surface Model is a good representation of the true uplift deformation mechanism in loose sand at H/D ratios between 0.5 and 3.5. At very low H/D ratios (H/D < 0.5), the deformation mechanism is more wedge-like, but the increased contribution from soil weight is likely to be compensated by the reduced shear contributions. Hence the design equation based on the Vertical Slip Surface Model still produces good estimates for the maximum available uplift resistance. The evolution of shear strain field from PIV analysis provides useful insight into how uplift resistance is mobilized as the uplift event progresses. Copyright 2010, Offshore Technology Conference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results from 10 minidrum centrifuge tests conducted at the Schofield Centre, compiled with 4 additional test results from Thusyanthan et al., 2008. All these tests were designed to measure the uplift resistance of a pipeline installed into stiff clay by trenching and backfilling, then uplifted approximately 3 months after installation. All tests were conducted at 1:30 scale using soil obtained from offshore clay samples. Experimental results show that clay blocks remained intact after 3 prototype months of consolidation, and were lifted rather than sheared during pipe pullout. The uplift resistance therefore depends on the weight of the soil cover and the shearing resistance mobilised at the softening contact points between the intact blocks and within the interstitial slurry. Slow drained pullout led to lower resistance than fast pullout, indicating that the drained response is critical for design. The varying scatter shows that peak uplift resistance is very sensitive to the arrangement of the backfill blocks when the cover and pipe diameter are comparable to the block size. Copyright © 2009 by The International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of densification to improve the performance of shallow foundations during the centrifuge modeling of earthquake-induced liquefaction on level sand deposits is discussed. The densification of liquefiable ground provided protection against or significantly reduces liquefaction-related damage. Propagation of accelerations in the deposit exhibited considerable distinct features according to the relative density of the sand in the model. It was found that during the first couple of cycles, the dense soil amplifies the fundamental frequency component of the earthquake and preserves the higher frequency components.