25 resultados para Hellmann-Feynman theorem

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We design a particle interpretation of Feynman-Kac measures on path spaces based on a backward Markovian representation combined with a traditional mean field particle interpretation of the flow of their final time marginals. In contrast to traditional genealogical tree based models, these new particle algorithms can be used to compute normalized additive functionals "on-the-fly" as well as their limiting occupation measures with a given precision degree that does not depend on the final time horizon. We provide uniform convergence results with respect to the time horizon parameter as well as functional central limit theorems and exponential concentration estimates. Our results have important consequences for online parameter estimation for non-linear non-Gaussian state-space models. We show how the forward filtering backward smoothing estimates of additive functionals can be computed using a forward only recursion.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reworks and amplifies Reichert's proof of his theorem (1969) which asserts that any impedance function of a one-port electrical network which can be realised with two reactive elements and an arbitrary number of resistors can be realised with two reactive elements and three resistors. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sequential Monte Carlo methods, also known as particle methods, are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. In many applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter with respect to the static parameters of the state-space model; for instance, in order to obtain maximum likelihood model parameters of interest, or to compute the optimal controller in an optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute the filter derivative was proposed and it was shown using numerical examples that the particle estimate was numerically stable in the sense that it did not deteriorate over time. In this paper we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit theorem for this particle approximation of the filter derivative are presented. It is further shown that under mixing conditions these Lp bounds and the asymptotic variance characterized by the central limit theorem are uniformly bounded with respect to the time index. We demon- strate the performance predicted by theory with several numerical examples. We also use the particle approximation of the filter derivative to perform online maximum likelihood parameter estimation for a stochastic volatility model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many problems in control and signal processing can be formulated as sequential decision problems for general state space models. However, except for some simple models one cannot obtain analytical solutions and has to resort to approximation. In this thesis, we have investigated problems where Sequential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions to online optimisation problems. We summarise the main contributions of the thesis as follows. Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov Model. We consider the case in which the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. In sensor scheduling, our aim is to minimise the variance of the estimation error of the hidden state with respect to the action sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in the literature that only solve approximations to the original problem. In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parameterised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum Likelihood(RML) algorithm for online parameter estimation. In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for the purpose of online decentralised inference. We have concentrated more on the distributed parameter estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief Propagation. The algorithms were successfully applied to solve the sensor localisation problem for sensor networks of small and medium size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pivotal problem in Bayesian nonparametrics is the construction of prior distributions on the space M(V) of probability measures on a given domain V. In principle, such distributions on the infinite-dimensional space M(V) can be constructed from their finite-dimensional marginals---the most prominent example being the construction of the Dirichlet process from finite-dimensional Dirichlet distributions. This approach is both intuitive and applicable to the construction of arbitrary distributions on M(V), but also hamstrung by a number of technical difficulties. We show how these difficulties can be resolved if the domain V is a Polish topological space, and give a representation theorem directly applicable to the construction of any probability distribution on M(V) whose first moment measure is well-defined. The proof draws on a projective limit theorem of Bochner, and on properties of set functions on Polish spaces to establish countable additivity of the resulting random probabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of Bayes' Theorem to signal processing provides a consistent framework for proceeding from prior knowledge to a posterior inference conditioned on both the prior knowledge and the observed signal data. The first part of the lecture will illustrate how the Bayesian methodology can be applied to a variety of signal processing problems. The second part of the lecture will introduce the concept of Markov Chain Monte-Carlo (MCMC) methods which is an effective approach to overcoming many of the analytical and computational problems inherent in statistical inference. Such techniques are at the centre of the rapidly developing area of Bayesian signal processing which, with the continual increase in available computational power, is likely to provide the underlying framework for most signal processing applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acoustic radiation from a spherical source undergoing angularly periodic axisymmetric harmonic surface vibrations while eccentrically suspended within a thermoviscous fluid sphere, which is immersed in a viscous thermally conducting unbounded fluid medium, is analyzed in an exact fashion. The formulation uses the appropriate wave-harmonic field expansions along with the translational addition theorem for spherical wave functions and the relevant boundary conditions to develop a closed-form solution in form of infinite series. The analytical results are illustrated with a numerical example in which the vibrating source is eccentrically positioned within a chemical fluid sphere submerged in water. The modal acoustic radiation impedance load on the source and the radiated far-field pressure are evaluated and discussed for representative values of the parameters characterizing the system. The proposed model can lead to a better understanding of dynamic response of an underwater acoustic lens. It is equally applicable in miniature transducer analysis and design with applications in medical ultrasonics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper follows the work of A.V. Shanin on diffraction by an ideal quarter-plane. Shanin's theory, based on embedding formulae, the acoustic uniqueness theorem and spherical edge Green's functions, leads to three modified Smyshlyaev formulae, which partially solve the far-field problem of scattering of an incident plane wave by a quarter-plane in the Dirichlet case. In this paper, we present similar formulae in the Neumann case, and describe a numerical method allowing a fast computation of the diffraction coefficient using Shanin's third modified Smyshlyaev formula. The method requires knowledge of the eigenvalues of the Laplace-Beltrami operator on the unit sphere with a cut, and we also describe a way of computing these eigenvalues. Numerical results are given for different directions of incident plane wave in the Dirichlet and the Neumann cases, emphasising the superiority of the third modified Smyshlyaev formula over the other two. © 2011 Elsevier B.V.