10 resultados para Heart Sounds

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atlases and statistical models play important roles in the personalization and simulation of cardiac physiology. For the study of the heart, however, the construction of comprehensive atlases and spatio-temporal models is faced with a number of challenges, in particular the need to handle large and highly variable image datasets, the multi-region nature of the heart, and the presence of complex as well as small cardiovascular structures. In this paper, we present a detailed atlas and spatio-temporal statistical model of the human heart based on a large population of 3D+time multi-slice computed tomography sequences, and the framework for its construction. It uses spatial normalization based on nonrigid image registration to synthesize a population mean image and establish the spatial relationships between the mean and the subjects in the population. Temporal image registration is then applied to resolve each subject-specific cardiac motion and the resulting transformations are used to warp a surface mesh representation of the atlas to fit the images of the remaining cardiac phases in each subject. Subsequently, we demonstrate the construction of a spatio-temporal statistical model of shape such that the inter-subject and dynamic sources of variation are suitably separated. The framework is applied to a 3D+time data set of 138 subjects. The data is drawn from a variety of pathologies, which benefits its generalization to new subjects and physiological studies. The obtained level of detail and the extendability of the atlas present an advantage over most cardiac models published previously. © 1982-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural sounds are structured on many time-scales. A typical segment of speech, for example, contains features that span four orders of magnitude: Sentences ($\sim1$s); phonemes ($\sim10$−$1$ s); glottal pulses ($\sim 10$−$2$s); and formants ($\sim 10$−$3$s). The auditory system uses information from each of these time-scales to solve complicated tasks such as auditory scene analysis [1]. One route toward understanding how auditory processing accomplishes this analysis is to build neuroscience-inspired algorithms which solve similar tasks and to compare the properties of these algorithms with properties of auditory processing. There is however a discord: Current machine-audition algorithms largely concentrate on the shorter time-scale structures in sounds, and the longer structures are ignored. The reason for this is two-fold. Firstly, it is a difficult technical problem to construct an algorithm that utilises both sorts of information. Secondly, it is computationally demanding to simultaneously process data both at high resolution (to extract short temporal information) and for long duration (to extract long temporal information). The contribution of this work is to develop a new statistical model for natural sounds that captures structure across a wide range of time-scales, and to provide efficient learning and inference algorithms. We demonstrate the success of this approach on a missing data task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of the investigations into a surgical incident involving the accidental retention inside a patient's venous system of a guide wire for central venous catheterisation (CVC), the Human Error Assessment and Reduction Technique (HEART) was used to examine the potential for further occurrences. It was found to be time-efficient and to yield plausible probabilities of human error, although its use in healthcare has challenges, suggesting adaptation would be beneficial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book presents the proceedings of the international conference on Contemporary Ergonomics and Human Factors 2013.