4 resultados para Health data
em Cambridge University Engineering Department Publications Database
Resumo:
There has recently been considerable research published on the applicability of monitoring systems for improving civil infrastructure management decisions. Less research has been published on the challenges in interpreting the collected data to provide useful information for engineering decision makers. This paper describes some installed monitoring systems on the Hammersmith Flyover, a major bridge located in central London (United Kingdom). The original goals of the deployments were to evaluate the performance of systems for monitoring prestressing tendon wire breaks and to assess the performance of the bearings supporting the bridge piers because visual inspections had indicated evidence of deterioration in both. This paper aims to show that value can be derived from detailed analysis of measurements from a number of different sensors, including acoustic emission monitors, strain, temperature and displacement gauges. Two structural monitoring systems are described, a wired system installed by a commercial contractor on behalf of the client and a research wireless deployment installed by the University of Cambridge. Careful interpretation of the displacement and temperature gauge data enabled bearings that were not functioning as designed to be identified. The acoustic emission monitoring indicated locations at which rapid deterioration was likely to be occurring; however, it was not possible to verify these results using any of the other sensors installed and hence the only method for confirming these results was by visual inspection. Recommendations for future bridge monitoring projects are made in light of the lessons learned from this monitoring case study. © 2014 This work is made available under the terms of the Creative Commons Attribution 4.0 International license,.
Resumo:
Condition-based maintenance is concerned with the collection and interpretation of data to support maintenance decisions. The non-intrusive nature of vibration data enables the monitoring of enclosed systems such as gearboxes. It remains a significant challenge to analyze vibration data that are generated under fluctuating operating conditions. This is especially true for situations where relatively little prior knowledge regarding the specific gearbox is available. It is therefore investigated how an adaptive time series model, which is based on Bayesian model selection, may be used to remove the non-fault related components in the structural response of a gear assembly to obtain a residual signal which is robust to fluctuating operating conditions. A statistical framework is subsequently proposed which may be used to interpret the structure of the residual signal in order to facilitate an intuitive understanding of the condition of the gear system. The proposed methodology is investigated on both simulated and experimental data from a single stage gearbox. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The potential adverse human health and climate impacts of emissions from UK airports have become a significant political issue, yet the emissions, air quality impacts and health impacts attributable to UK airports remain largely unstudied. We produce an inventory of UK airport emissions - including aircraft landing and takeoff (LTO) operations and airside support equipment - with uncertainties quantified. The airports studied account for more than 95% of UK air passengers in 2005. We estimate that in 2005, UK airports emitted 10.2 Gg [-23 to +29%] of NOx, 0.73 Gg [-29 to +32%] of SO2, 11.7 Gg [-42 to +77%] of CO, 1.8 Gg [-59 to +155%] of HC, 2.4 Tg [-13 to +12%] of CO2, and 0.31 Gg [-36 to +45%] of PM2.5. This translates to 2.5 Tg [-12 to +12%] CO2-eq using Global Warming Potentials for a 100-year time horizon. Uncertainty estimates were based on analysis of data from aircraft emissions measurement campaigns and analyses of aircraft operations.The First-Order Approximation (FOA3) - currently the standard approach used to estimate particulate matter emissions from aircraft - is compared to measurements and it is shown that there are discrepancies greater than an order of magnitude for 40% of cases for both organic carbon and black carbon emissions indices. Modified methods to approximate organic carbon emissions, arising from incomplete combustion and lubrication oil, and black carbon are proposed. These alterations lead to factor 8 and a 44% increase in the annual emissions estimates of black and organic carbon particulate matter, respectively, leading to a factor 3.4 increase in total PM2.5 emissions compared to the current FOA3 methodology. Our estimates of emissions are used in Part II to quantify the air quality and health impacts of UK airports, to assess mitigation options, and to estimate the impacts of a potential London airport expansion. © 2011 Elsevier Ltd.
Resumo:
Background: There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. Aim. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. Methods. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). Results: The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. Conclusions: A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection. © 2011 Jun et al.