7 resultados para Hands-on education

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Locomotion has been one of the frequently used case studies in hands-on curricula in robotics education. Students are usually instructed to construct their own wheeled or legged robots from modular robot kits. In the development process of a robot students tend to emphasize on the programming part and consequently, neglect the design of the robot's body. However, the morphology of a robot (i.e. its body shape and material properties) plays an important role especially in dynamic tasks such as locomotion. In this paper we introduce a case study of a tutorial on soft-robotics where students were encouraged to focus solely on the morphology of a robot to achieve stable and fast locomotion. The students should experience the influence material properties exert on the performance of a robot and consequently, extract design principles. This tutorial was held in the context of the 2012 Summer School on Soft Robotics at ETH Zurich, which was one of the world's first courses specialized in the emerging field. We describe the tutorial set-up, the used hardware and software, the students assessment criteria as well as the results. Based on the high creativity and diversity of the robots built by the students, we conclude that the concept of this tutorial has great potentials for both education and research. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

If a product is being designed to be genuinely inclusive, then the designers need to be able to assess the level of exclusion of the product that they are working on and to identify possible areas of improvement. To be of practical use, the assessments need to be quick, consistent and repeatable. The aim of this workshop is to invite attendees to participate in the evaluation of a number of everyday objects using an assessment technique being considered by the workshop organisers. The objectives of the workshop include evaluating the effectiveness of the assessment method, evaluating the accessibility of the products being assessed and to suggest revisions to the assessment scales being used. The assessment technique is to be based on the ONS capability measures [1]. This source recognises fourteen capability scales of which seven are particularly pertinent to product evaluation, namely: motion, dexterity, reach and stretch, vision, hearing, communication, and intellectual functioning. Each of these scales ranges from 0 (fully able) through 1 (minimal impairment) to 10 (severe impairment). The attendees will be asked to rate the products on these scales. Clearly the assessed accessibility of the product depends on the assumptions made about the context of use. The attendees will be asked to clearly note the assumptions that they are making about the context in which the product is being assessed. For instance, with a hot water bottle, assumptions have to be made about the availability of hot water and these can affect the overall accessibility rating. The workshop organisers will not specify the context of use as the aim is to identify how assessors would use the assessment method in the real world. The objects being assessed will include items such as remote controls, pill bottles, food packaging, hot water bottles and mobile telephones. the attendees will be encouraged to assess two or more products in detail. Helpers will be on hand to assist and observe the assessments. The assessments will be collated and compared and feedback about the assessment method sought from the attendees. Drawing on a preliminary review of the assessment results, initial conclusions will be presented at the end of the workshop. More detailed analyses will be made available in subsequent proceedings. It is intended that the workshop will provide workshop attendees with an opportunity to perform hands-on assessment of a number everyday products and identify features which are inclusive and those that are not. It is also intended to encourage an appreciation of the capabilities to be considered when evaluating accessibility.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to see. All of the parts but one are off the shelf, and assembly time is generally less than two days, which makes the microscope a robust instrument that is readily handled by the students with little chance of damage. While the scanning resolution is nowhere near that of a commercial instrument, it is more than sufficient to take interesting scans of micrometer-scale objects. A survey of students after their having used the AFM resulted in a generally good response, with 80% agreeing that they had a positive learning experience. © 2009 IEEE.