7 resultados para Habitation and urban informality

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cities may be responsible for up to 70% of global carbon emissions and 75% of global energy consumption and by 2050 it is estimated that 70% of the world's population could live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city regions systemically to re-engineer their built environment and urban infrastructure in response to climate change and resource constraints. Re-Engineering the City 2020-2050: Urban Foresight and Transition Management (Retrofit 2050) is a major new interdisciplinary project funded under the Engineering and Physical Science Research Council's (EPSRC) Sustainable Urban Environments Programme which seeks to address this challenge. This briefing describes the background and conceptual framing of Retrofit 2050 project, its aims and objectives and research approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building integrated photovoltaics (BIPV) has potential of becoming the mainstream of renewable energy in the urban environment. BIPV has significant influence on the thermal performance of building envelope and changes radiation energy balance by adding or replacing conventional building elements in urban areas. PTEBU model was developed to evaluate the effect of photovoltaic (PV) system on the microclimate of urban canopy layer. PTEBU model consists of four sub-models: PV thermal model, PV electrical performance model, building energy consumption model, and urban canyon energy budget model. PTEBU model is forced with temperature, wind speed, and solar radiation above the roof level and incorporates detailed data of PV system and urban canyon in Tianjin, China. The simulation results show that PV roof and PV façade with ventilated air gap significantly change the building surface temperature and sensible heat flux density, but the air temperature of urban canyon with PV module varies little compared with the urban canyon of no PV. The PV module also changes the magnitude and pattern of diurnal variation of the storage heat flux and the net radiation for the urban canyon with PV increase slightly. The increase in the PV conversion efficiency not only improves the PV power output, but also reduces the urban canyon air temperature. © 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective management is a key to ensuring the current and future sustainability of land, water and energy resources. Identifying the complexities of such management is not an easy task, especially since past studies have focussed on studying these resources in isolation from one another. However, with rapid population growth and an increase in the awareness of a potential change in climatic conditions that may affect the demand for and supply of food, water and energy, there has been a growing need to integrate the planning decisions relating to these three resources. The paper shows the visualisation of linked resources by drawing a set of interconnected Sankey diagrams for energy, water and land. These track the changes from basic resource (e.g. coal, surface water, groundwater and cropland) through transformations (e.g. fuel refining and desalination) to final services (e.g. sustenance, hygiene and transportation). The focus here is on the water analysis aspects of the tool, which uses California as a detailed case study. The movement of water in California is traced from its source to its services by mapping the different transformations of water from when it becomes available, through its use, to further treatment, to final sinks (including recycling and reuse of that resource). The connections that water has with energy and land resources for the state of California are highlighted. This includes the amount of energy used to pump and treat water, and the amount of water used for energy production and the land resources which create a water demand to produce crops for food. By mapping water in this way, policy-makers and resource managers can more easily understand the competing uses of water (environment, agriculture and urban use) through the identification of the services it delivers (e.g. sanitation, agriculture, landscaping), the potential opportunities for improving the management of the resource (e.g. building new desalination plants, reducing the demand for services), and the connections with other resources which are often overlooked in a traditional sector-based management strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Climate Change Act of 2008 the UK Government pledged to reduce carbon emissions by 80% by 2050. As one step towards this, regulations are being introduced requiring all new buildings to be ‘zero carbon’ by 2019. These are defined as buildingswhichemitnetzerocarbonduringtheiroperationallifetime.However,inordertomeetthe80%targetitisnecessary to reduce the carbon emitted during the whole life-cycle of buildings, including that emitted during the processes of construction. These elements make up the ‘embodied carbon’ of the building. While there are no regulations yet in place to restrictembodiedcarbon,anumberofdifferentapproacheshavebeenmade.Thereareseveralexistingdatabasesofembodied carbonandembodiedenergy.Mostprovidedataforthematerialextractionandmanufacturingonly,the‘cradletofactorygate’ phase. In addition to the databases, various software tools have been developed to calculate embodied energy and carbon of individual buildings. A third source of data comes from the research literature, in which individual life cycle analyses of buildings are reported. This paper provides a comprehensive review, comparing and assessing data sources, boundaries and methodologies. The paper concludes that the wide variations in these aspects produce incomparable results. It highlights the areas where existing data is reliable, and where new data and more precise methods are needed. This comprehensive review will guide the future development of a consistent and transparent database and software tool to calculate the embodied energy and carbon of buildings.