3 resultados para HOST CONTROL

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanistic determinants of bacterial growth, death, and spread within mammalian hosts cannot be fully resolved studying a single bacterial population. They are also currently poorly understood. Here, we report on the application of sophisticated experimental approaches to map spatiotemporal population dynamics of bacteria during an infection. We analyzed heterogeneous traits of simultaneous infections with tagged Salmonella enterica populations (wild-type isogenic tagged strains [WITS]) in wild-type and gene-targeted mice. WITS are phenotypically identical but can be distinguished and enumerated by quantitative PCR, making it possible, using probabilistic models, to estimate bacterial death rate based on the disappearance of strains through time. This multidisciplinary approach allowed us to establish the timing, relative occurrence, and immune control of key infection parameters in a true host-pathogen combination. Our analyses support a model in which shortly after infection, concomitant death and rapid bacterial replication lead to the establishment of independent bacterial subpopulations in different organs, a process controlled by host antimicrobial mechanisms. Later, decreased microbial mortality leads to an exponential increase in the number of bacteria that spread locally, with subsequent mixing of bacteria between organs via bacteraemia and further stochastic selection. This approach provides us with an unprecedented outlook on the pathogenesis of S. enterica infections, illustrating the complex spatial and stochastic effects that drive an infectious disease. The application of the novel method that we present in appropriate and diverse host-pathogen combinations, together with modelling of the data that result, will facilitate a comprehensive view of the spatial and stochastic nature of within-host dynamics. © 2008 Grant et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Campylobacter jejuni is a zoonotic bacterial pathogen of worldwide importance. It is estimated that 460,000 human infections occur in the United Kingdom per annum and these involve acute enteritis and may be complicated by severe systemic sequelae. Such infections are frequently associated with the consumption of contaminated poultry meat and strategies to control C. jejuni in poultry are expected to limit pathogen entry into the food chain and the incidence of human disease. Toward this aim, a total of 840 Light Sussex chickens were used to evaluate a Salmonella enterica serovar Typhimurium ΔaroA vaccine expressing the C. jejuni amino acid binding protein CjaA as a plasmid-borne fusion to the C-terminus of fragment C of tetanus toxin. Chickens were given the vaccine at 1-day-old and two weeks later by oral gavage, then challenged after a further two weeks with C. jejuni. Across six biological replicates, statistically significant reductions in caecal C. jejuni of c. 1.4 log10 colony-forming units/g were observed at three and four weeks post-challenge relative to age-matched unvaccinated birds. Protection was associated with the induction of CjaA-specific serum IgY and biliary IgA. Protection was not observed using a vaccine strain containing the empty plasmid. Vaccination with recombinant CjaA subcutaneously at the same intervals significantly reduced the caecal load of C. jejuni at three and four weeks post-challenge. Taken together these data imply that responses directed against CjaA, rather than competitive or cross-protective effects mediated by the carrier, confer protection. The impact of varying parameters on the efficacy of the S. Typhimurium ΔaroA vaccine expressing TetC-CjaA was also tested. Delaying the age at primary vaccination had little impact on protection or humoral responses to CjaA. The use of the parent strain as carrier or changing the attenuating mutation of the carrier to ΔspaS or ΔssaU enhanced the protective effect, consistent with increased invasion and persistence of the vaccine strains relative to the ΔaroA mutant. Expression in the ΔaroA strain of a TetC fusion to Peb1A, but not TetC fusions to GlnH or ChuA, elicited protection against intestinal colonisation by C. jejuni that was comparable to that observed with the TetC-CjaA fusion. Our data are rendered highly relevant by use of the target host in large numbers and support the potential of CjaA- and Peb1A-based vaccines for control of C. jejuni in poultry. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salmonella enterica causes a range of life-threatening diseases in humans and animals worldwide. Current treatments for S. enterica infections are not sufficiently effective, and there is a need to develop new vaccines and therapeutics. An understanding of how S. enterica spreads in tissues has very important implications for targeting bacteria with vaccine-induced immune responses and antimicrobial drugs. Development of new control strategies would benefit from a more sophisticated evaluation of bacterial location, spatiotemporal patterns of spread and distribution in the tissues, and sites of microbial persistence. We review here recent studies of S. enterica serovar Typhimurium (S. Typhimurium) infections in mice, an established model of systemic typhoid fever in humans, which suggest that continuous bacterial spread to new infection foci and host phagocytes is an essential trait in the virulence of S. enterica during systemic infections. We further highlight how infections within host tissues are truly heterogeneous processes despite the fact that they are caused by the expansion of a genetically homogeneous microbial population. We conclude by discussing how understanding the within-host quantitative, spatial and temporal dynamics of S. enterica infections might aid the development of novel targeted preventative measures and drug regimens.