8 resultados para H-2 SENSING PROPERTIES

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-biased Terfenol-D 2-2 composites exhibit high frequency of actuation and good magnetomechanical properties; however, their potential usefulness is highly dependent on their magnetoacoustic properties, particularly for ultrasonic applications. The speed of sound, c, and its variation with an externally applied magnetic field have been measured for the above composites using a 10 MHz longitudinal pulse. When the sound propagates parallel to the layers, the acoustic impedance was found to be independent of the external applied field, and lower than that for bulk Terfenol-D. The magnetomechanical coupling coefficient was found to be generally low (up to 0.35) and dependent on the volume ratio of materials, being higher for the specimens with greater content of Terfenol-D. The low attenuation, low acoustic impedance, and high frequency of actuation make this structure an interesting alternative for use in underwatersound navigation and ranging and other ultrasonic applications. When the pulse propagates orthogonal to the layers, c was found to vary by up to 3% with the application of an external field, but the acoustic attenuation was found to be very high due to the multiple reflections produced at the interfaces between the layers. This latter phenomenon has been calculated theoretically. © 2007 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electronic and magnetic properties of the transition metal sesqui-oxides Cr(2)O(3), Ti(2)O(3), and Fe(2)O(3) have been calculated using the screened exchange (sX) hybrid density functional. This functional is found to give a band structure, bandgap, and magnetic moment in better agreement with experiment than the local density approximation (LDA) or the LDA+U methods. Ti(2)O(3) is found to be a spin-paired insulator with a bandgap of 0.22 eV in the Ti d orbitals. Cr(2)O(3) in its anti-ferromagnetic phase is an intermediate charge transfer Mott-Hubbard insulator with an indirect bandgap of 3.31 eV. Fe(2)O(3), with anti-ferromagnetic order, is found to be a wide bandgap charge transfer semiconductor with a 2.41 eV gap. Interestingly sX outperforms the HSE functional for the bandgaps of these oxides.