10 resultados para Gryllus integer--Parasites.
em Cambridge University Engineering Department Publications Database
Hybrid model predictive control applied to switching control of burner load for a compact marine boi
Resumo:
This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for which the optimal solution is a limit cycle. Regarding the marine boiler control the aim is to find an optimal control strategy which minimizes a trade-off between deviations in boiler pressure and water level from their respective setpoints while limiting burner switches.The approach taken is based on the Mixed Logic Dynamical framework. The whole boiler systems is modelled in this framework and a model predictive controller is designed. However to facilitate on-line implementation only a small part of the search tree in the mixed integer optimization is evaluated to find out whether a switch should occur or not. The strategy is verified on a simulation model of the compact marine boiler for control of low/high burner load switches. It is shown that even though performance is adequate for some disturbance levels it becomes deteriorated when the optimal solution is a limit cycle. Copyright © 2007 International Federation of Automatic Control All Rights Reserved.
Resumo:
In this paper, a strategy for min-max Moving Horizon Estimation (MHE) of a class of uncertain hybrid systems is proposed. The class of hybrid systems being considered are Piecewise Affine systems (PWA) with both continuous valued and logic components. Furthermore, we consider the case when there is a (possibly structured) norm bounded uncertainty in each subsystem. Sufficient conditions on the time horizon and the penalties on the state at the beginning of the estimation horizon to guarantee convergence of the MHE scheme will be provided. The MHE scheme will be implemented as a mixed integer semidefinite optimisation for which an efficient algorithm was recently introduced.
Resumo:
This paper provides a direct comparison of two stochastic optimisation techniques (Markov Chain Monte Carlo and Sequential Monte Carlo) when applied to the problem of conflict resolution and aircraft trajectory control in air traffic management. The two methods are then also compared to another existing technique of Mixed-Integer Linear Programming which is also popular in distributed control. © 2011 IFAC.
Resumo:
Numerically well-conditioned state-space realisations for all-pass systems, such as Padé approximations to exp(-s), are derived that can be computed using exact integer arithmetic. This is then applied to the a series of functions of exp(-s). It is also shown that the H-infinity norm of the transfer function from the input to the state of a balanced realisation of the Padé approximation of exp(-s) is unity. © 2012 IEEE.
Resumo:
Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices.
Resumo:
The mechanical amplification effect of parametric resonance has the potential to outperform direct resonance by over an order of magnitude in terms of power output. However, the excitation must first overcome the damping-dependent initiation threshold amplitude prior to accessing this more profitable region. In addition to activating the principal (1st order) parametric resonance at twice the natural frequency ω0, higher orders of parametric resonance may be accessed when the excitation frequency is in the vicinity of 2ω0/n for integer n. Together with the passive design approaches previously developed to reduce the initiation threshold to access the principal parametric resonance, vacuum packaging (< 10 torr) is employed to further reduce the threshold and unveil the higher orders. A vacuum packaged MEMS electrostatic harvester (0.278 mm3) exhibited 4 and 5 parametric resonance peaks at room pressure and vacuum respectively when scanned up to 10 g. At 5.1 ms-2, a peak power output of 20.8 nW and 166 nW is recorded for direct and principal parametric resonance respectively at atmospheric pressure; while a peak power output of 60.9 nW and 324 nW is observed for the respective resonant peaks in vacuum. Additionally, unlike direct resonance, the operational frequency bandwidth of parametric resonance broadens with lower damping. © Published under licence by IOP Publishing Ltd.