193 resultados para Grid Generation

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the development of an automated design optimization system that makes use of a high fidelity Reynolds-Averaged CFD analysis procedure to minimize the fan forcing and fan BOGV (bypass outlet guide vane) losses simultaneously taking into the account the down-stream pylon and RDF (radial drive fairing) distortions. The design space consists of the OGV's stagger angle, trailing-edge recambering, axial and circumferential positions leading to a variable pitch optimum design. An advanced optimization system called SOFT (Smart Optimisation for Turbomachinery) was used to integrate a number of pre-processor, simulation and in-house grid generation codes and postprocessor programs. A number of multi-objective, multi-point optimiztion were carried out by SOFT on a cluster of workstations and are reported herein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses of photovoltaic power generation based on Lyapunov's theorems are presented. The characteristics of the photovoltaic module and the power conditioning unit are analyzed in order to establish energy functions that assess the stability of solutions and define safe regions of operation. Furthermore, it is shown that grid-connected photovoltaic modules driven at maximum power may become unstable under normal grid transients. In such cases, stability can be maintained by allowing an operational margin defined as the energy difference between the stable and the unstable solutions of the system. Simulations show that modules cope well with grid transients when a sufficiently large margin is used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared with the Doubly fed induction generators (DFIG), the brushless doubly fed induction generator (BDFIG) has a commercial potential for wind power generation due to its lower cost and higher reliability. In the most recent grid codes, wind generators are required to be capable of riding through low voltage faults. As a result of the negative sequence, induction generators response differently in asymmetrical voltage dips compared with the symmetrical dip. This paper gave a full behavior analysis of the BDFIG under different types of the asymmetrical fault and proposed a novel control strategy for the BDFIG to ride through asymmetrical low voltage dips without any extra hardware such as crowbars. The proposed control strategies are experimentally verified by a 250-kW BDFIG. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work forms part of a project on the use of large eddy simulation (LES) for broadband rotor-stator interaction noise prediction. In this paper, we focus on LES calculations of noise sources on and close to a blade trailing edge. We consider two test cases; one an isolated NACA0012 airfoil in flow, and the other an industry-standard rotating fan. In the first case, turbulent mean and RMS velocities and energy spectra at different locations are compared with those from experiment. 1,2The sound generated by the unsteady pressure fluctuations on the airfoil surface and by the flow turbulence will be predicted using a Ffowcs Williams Hawkings (FW-H) surface. In the second case, unsteady flow and acoustic fields around the blade passage 3 are presented for a refined mesh, and the rotor-stator tonal noise will be predicted by using the rotor-wake mean velocity profile and the methodology described in Lloyd & Peake 4. Copyright © 2009 by Qinling Li, Nigel Peake & Mark Savill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present solutions to scattering problems for unsteady disturbances to a mean swirling flow in an annular duct with a rigid 'splitter'. This situation has application to rotor-stator interaction noise in aeroengines, where the flow downstream of the fan is swirling and bifurcates into the by-pass duct and the engine core. We also consider the trailing edge extension of this problem. Inviscid mean flow in a cylindrical annulus is considered, with both axial and swirling (azimuthal) velocity components. The presence of vorticity in the mean flow couples the acoustic and vorticity modes of irrotational flow. Instead we have one combined spectrum of acoustic-vorticity waves in which the 'sonic' and 'nearly-convected' modes are fully coupled. In addition to the aeroacoustics application the results offer insight into the behaviour of these acoustic-vorticity waves, and the precise nature of the coupling between the two types of mode. Two regimes are discussed in which progress has been made, one for a specialised mean flow, uniform axial flow and rigid body swirl, and a second regime in which the frequency is assumed large, valid for any axisymmetric mean flow. The Wiener-Hopf technique is used to solve the scattering problems mathematically, and we present numerical evaluations of these solutions. Several new effects are seen to arise due to the mean vorticity, in particular the generation of sound at a trailing edge due to the scattering of a nearly convected disturbance, in contrast to the way a convected gust silently passes a trailing edge in uniform mean flow.