308 resultados para Graphene layers
em Cambridge University Engineering Department Publications Database
Resumo:
With recent developments in carbon-based electronics, it is imperative to understand the interplay between the morphology and electronic structure in graphene and graphite. We demonstrate controlled and repeatable vertical displacement of the top graphene layer from the substrate mediated by the scanning tunneling microscopy (STM) tip-sample interaction, manifested at the atomic level as well as over superlattices spanning several tens of nanometers. Besides the full-displacement, we observed the first half-displacement of the surface graphene layer, confirming that a reduced coupling rather than a change in lateral layer stacking is responsible for the triangular/honeycomb atomic lattice transition phenomenon, clearing the controversy surrounding it. Furthermore, an atomic scale mechanical stress at a grain boundary in graphite, resulting in the localization of states near the Fermi energy, is revealed through voltage-dependent imaging. A method of producing graphene nanoribbons based on the manipulation capabilities of the STM is also implemented.
Resumo:
A fundamental study of visible diffraction effects from patterned graphene layers is presented. By patterning graphene into optical gratings, visible diffraction from graphene is experimentally measured as a function of the number of layers and visible wavelengths. A practical application of these effects is also presented, by demonstrating an optical hologram based on graphene. A high resolution (pixel size 400 nm) intensity hologram is fabricated which, in response to incident laser light, generates a visible image. These findings suggest that visible diffraction in graphene can find practical application in holograms and should also be considered during the design and characterisation of graphene-based optical applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We present an in-depth study of the myriad atomically resolved patterns observed on graphite using the scanning tunnelling microscope (STM) over the past three decades. Through the use of highly resolved atomic resolution images, we demonstrate how the interactions between the different graphene layers comprising graphite affect the local surface atomic charge density and its resulting symmetry orientation, with particular emphasis on interactions that are thermodynamically unstable. Moreover, the interlayer graphene coupling is controlled experimentally by varying the tip-surface interaction, leading to associated changes in the atomic patterns. The images are corroborated by first-principles calculations, further validating our claim that surface graphene displacement, coming both from lateral and vertical displacement of the top graphene layer, forms the basis of the rich variety of atomic patterns observed in STM experiments on graphite.
Resumo:
The advent of nanotechnology has revolutionised our ability to engineer electrode interfaces. These are particularly attractive to measure biopotentials, and to study the nervous system. In this work, we demonstrate enhanced in vitro recording of neuronal activity using electrodes decorated with carbon nanosheets (CNSs). This material comprises of vertically aligned, free standing conductive sheets of only a few graphene layers with a high surfacearea- to-volume ratio, which makes them an interesting material for biomedical electrodes. Further, compared to carbon nanotubes, CNSs can be synthesised without the need for metallic catalysts like Ni, Co or Fe, thereby reducing potential cytotoxicity risks. Electrochemical measurements show a five times higher charge storage capacity, and an almost ten times higher double layer capacitance as compared to TiN. In vitro experiments were performed by culturing primary hippocampal neurons from mice on micropatterned electrodes. Neurophysiological recordings exhibited high signal-to-noise ratios of 6.4, which is a twofold improvement over standard TiN electrodes under the same conditions. © 2013 Elsevier Ltd. All rights reserved.
Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition
Resumo:
We report on a large improvement in the wetting of Al 2O 3 thin films grown by un-seeded atomic layer deposition on monolayer graphene, without creating point defects. This enhanced wetting is achieved by greatly increasing the nucleation density through the use of polar traps induced on the graphene surface by an underlying metallic substrate. The resulting Al 2O 3/graphene stack is then transferred to SiO 2 by standard methods. © 2012 American Institute of Physics.
Resumo:
The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from ∼43cm -1 in bulk graphite to ∼31cm -1 in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.
Resumo:
Graphene is used as the thinnest possible spacer between gold nanoparticles and a gold substrate. This creates a robust, repeatable, and stable sub-nanometre gap for massive plasmonic field enhancements. White light spectroscopy of single 80 nm gold nanoparticles reveals plasmonic coupling between the particle and its image within the gold substrate. While for a single graphene layer, spectral doublets from coupled dimer modes are observed shifted into the near infra-red, these disappear for increasing numbers of layers. These doublets arise from plasmonic charge transfer, allowing the direct optical measurement of out-of-plane conductivity in such layered systems. Gating the graphene can thus directly produce plasmon tuning.
Resumo:
The dependence of the Raman spectrum on the excitation energy has been investigated for ABA-and ABC- stacked few-layer graphene in order to establish the fingerprint of the stacking order and the number of layers, which affect the transport and optical properties of few-layer graphene. Five different excitation sources with energies of 1.96, 2.33, 2.41, 2.54 and 2.81â €...eV were used. The position and the line shape of the Raman 2D, G*, N, M, and other combination modes show dependence on the excitation energy as well as the stacking order and the thickness. One can unambiguously determine the stacking order and the thickness by comparing the 2D band spectra measured with 2 different excitation energies or by carefully comparing weaker combination Raman modes such as N, M, or LOLA modes. The criteria for unambiguous determination of the stacking order and the number of layers up to 5 layers are established.