157 resultados para Grain orientation

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated single grain boundaries (GBs) isolated in coated conductors produced by Metal-Organic Deposition (MOD). When a magnetic field is swept in the film plane, an angle-dependent crossover from boundary to grain limited critical current density Jc is found. In the force-free orientation, even at fields as high as 8 T, the GBs still limit Jc. We deduce that this effect is a direct consequence of GB meandering. We have employed these single GB results to explain the dependence of Jc of polycrystalline tracks on their width: in-plane measurements become flatter as the tracks are narrowed down. This result is consistent with the stronger GB limitation at field configurations close to force-free found from the isolated boundaries. Our study shows that for certain geometries even at high fields the effect of GBs cannot be neglected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an efficient vision-based global topological localization approach that uses a coarse-to-fine strategy. Orientation Adjacency Coherence Histogram (OACH), a novel image feature, is proposed to improve the coarse localization. The coarse localization results are taken as inputs for the fine localization which is carried out by matching Harris-Laplace interest points characterized by the SIFT descriptor. Computation of OACHs and interest points is efficient due to the fact that these features are computed in an integrated process. We have implemented and tested the localization system in real environments. The experimental results demonstrate that our approach is efficient and reliable in both indoor and outdoor environments. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of inorganic materials are used in diverse applications, typically in polycrystalline form due to their relatively simple production. We have used enhanced piezoresponse force microscopy to investigate the domain distribution within neighbouring grains in thin polycrystalline films of the ferroelectric-ferroelastic system lead zirconate titanate (PZT). We demonstrate that domains are organized into areas with a correlated alignment of the ferroelastic and ferroelectric domains, spanning multiple grain boundaries. We present five typical arrangements of such structures: azimuthal, radial, gradient, and short- and long- range linear domain organizations. Moreover, we discuss the mechanical and electrical constraints that dictate these structures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.