10 resultados para Graded Identities

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for the optimal design of Functionally Graded Materials (FGM) is proposed in this paper. Instead of using the widely used explicit functional models, a feature tree based procedural model is proposed to represent generic material heterogeneities. A procedural model of this sort allows more than one explicit function to be incorporated to describe versatile material gradations and the material composition at a given location is no longer computed by simple evaluation of an analytic function, but obtained by execution of customizable procedures. This enables generic and diverse types of material variations to be represented, and most importantly, by a reasonably small number of design variables. The descriptive flexibility in the material heterogeneity formulation as well as the low dimensionality of the design vectors help facilitate the optimal design of functionally graded materials. Using the nature-inspired Particle Swarm Optimization (PSO) method, functionally graded materials with generic distributions can be efficiently optimized. We demonstrate, for the first time, that a PSO based optimizer outperforms classical mathematical programming based methods, such as active set and trust region algorithms, in the optimal design of functionally graded materials. The underlying reason for this performance boost is also elucidated with the help of benchmarked examples. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shortly after the loading of a pressurized water reactor (PWR) core, the axial power distribution in fresh fuel has already attained the characteristic, almost flat shape, typical of burned fuel. At beginning of cycle (BOC), however, the axial distribution is centrally peaked. In assemblies hosting uniform burnable boron rods, this BOC peaking is even more pronounced. A reduction in the axial peaking is today often achieved by shortening the burnable boron rods by some 30 cm at each edge. It is shown that a two-zone grading of the boron rod leads, in a representative PWR cycle, to a reduction of the hot-spot temperature of approximately 70 °C, compared with the nongraded case. However, with a proper three-zone grading of the boron rod, an additional 20 °C may be cut off the hot-spot temperature. Further, with a slightly skewed application of this three-zone grading, an additional 50 °C may be cut off. The representative PWR cycle studied was cycle 11 of the Indian Point 2 station, with a simplification in the number of fuel types and in the burnup distribution. The analysis was based on a complete three-dimensional burnup calculation. The code system was ELCOS, with BOXER as an assembly code for the generation of burnup-dependent cross sections and SILWER as a three-dimensional core code with thermal-hydraulic feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode Division Multiplexing is performed over 2km and 8km of 50μm graded-index multimode fibre using (de)multiplex phase masks based around optical vortex modes to transmit 2×56Gbps QPSK signals without MIMO equalization. © 2013 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode Division Multiplexing is performed over 2km and 8km of 50μm graded-index multimode fibre using (de)multiplex phase masks based around optical vortex modes to transmit 2x56Gbps QPSK signals without MIMO equalization. © 2013 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planar plasmonic devices are becoming attractive for myriad applications, owing to their potential compatibility with standard microelectronics technology and the capability for densely integrating a large variety of plasmonic devices on a chip. Mitigating the challenges of using plasmonics in on-chip configurations requires precise control over the properties of plasmonic modes, in particular their shape and size. Here we achieve this goal by demonstrating a planar plasmonic graded-index lens focusing surface plasmons propagating along the device. The plasmonic mode is manipulated by carving subwavelength features into a dielectric layer positioned on top of a uniform metal film, allowing the local effective index of the plasmonic mode to be controlled using a single binary lithographic step. Focusing and divergence of surface plasmons is demonstrated experimentally. The demonstrated approach can be used for manipulating the propagation of surface plasmons, e.g., for beam steering, splitting, cloaking, mode matching, and beam shaping applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate the planar focusing of Surface Plasmon Polaritons using space variant PMMA subwavelength features on top of a metallic film. Focusing is obtained by creating an effective graded refractive index profile. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate the planar focusing of Surface Plasmon Polaritons using space variant PMMA subwavelength features on top of a metallic film. Focusing is obtained by creating an effective graded refractive index profile. © OSA 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new practical multimode fiber optical launch scheme, providing near single mode group excitation for >5 times transmission bandwidth improvement. Equalization-free transmission of a 10-Gb/s signal over 220-m fiber is achieved in experimental demonstrations. © 2010 Optical Society of America.