14 resultados para Glucose biosensor

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly sensitive nonenzymatic amperometric glucose sensor was fabricated by using Ni nanoparticles homogeneously dispersed within and on the top of a vertically aligned CNT forest (CNT/Ni nanocomposite sensor), which was directly grown on a Si/SiO2 substrate. The surface morphology and elemental analysis were characterized using scanning electron microscopy and energy dispersive spectroscopy, respectively. Cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activities of CNT/Ni electrode. The CNT/Ni nanocomposite sensor exhibited a great enhancement of anodic peak current after adding 5 mM glucose in alkaline solution. The sensor can also be applied to the quantification of glucose content with a linear range covering from 5 μM to 7 mM, a high sensitivity of 1433 μA mM-1 cm-2, and a low detection limit of 2 μM. The CNT/Ni nanocomposite sensor exhibits good reproducibility and long-term stability, moreover, it was also relatively insensitive to commonly interfering species, such as uric acid, ascorbic acid, acetaminophen, sucrose and d-fructose. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Carbon nanotube (CNT) fiber directly spun from an aerogel has a unique, well-aligned nanostructure (nano-pore and nano-brush), and thus provides high electro-catalytic activity and strong interaction with glucose oxidase enzyme. It shows great potential as a microelectrode for electrochemical biosensors. RESULTS: Cyclic voltammogram results indicate that post-synthesis treatments have great influence on the electrocatalytic activity of CNT fibers. Raman spectroscopy and electrical conductivity tests suggest that fibers annealed at 250 °C remove most of the impurities without damaging the graphite-like structure. This leads to a nano-porous morphology on the surface and the highest conductivity value (1.1 × 10 5 S m -1). Two CNT fiber microelectrode designs were applied to enhance their electron transfer behaviour, and it was found that a design using a 30 nm gold coating is able to linearly cover human physiological glucose level between 2 and 30 mmol L -1. The design also leads to a low detection limit of 25 μmol L -1. CONCLUSIONS: The high performance of CNT fibers not only offers exceptional mechanical and electrical properties, but also provides a large surface area and electron transfer pathway. They consequently make excellent bioactive microelectrodes for glucose biosensing, especially for potential use in implantable devices. © 2011 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs) by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area. © 2012 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO thin film bulk acoustic resonators (FBARs) with resonant frequency of ∼1.5 GHz have been fabricated to function as an odorant biosensor. Physical adsorption of an odorant binding protein (AaegOBP22 from Aedes aegypti) resulted in frequency down shift. N,N-diethyl-meta-toluamide (DEET) has been selected as a ligand to the odorant binding protein (OBP). Alternate exposure of the bare FBARs to nitrogen flow with and without DEET vapor did not cause any noticeable frequency change. However, frequency drop was detected when exposing the OBP loaded FBAR sensors to the nitrogen flow containing DEET vapor against nitrogen flow alone (control) and the extent of frequency shift was proportional to the amount of the protein immobilized on the FBAR surface, indicating a linear response to DEET binding. These findings demonstrate the potential of binding protein functionalized FBARs as odorant biosensors. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a chip-scale microbubble-based biosensing platform. An encapsulated microbubble oscillates acoustically in liquid when exposed to an ultrasound field with its resonant frequency set by shell parameters. Changes in the resonant frequency of the microbubble can be used to monitor analyte-binding events on the shell. A device concept is proposed where ultrasonic transducers are integrated within a microfluidic channel, inside which electrodes are patterned for differential measurements of microbubble impedance. This device enables simultaneous measurements of the acoustic and electrical response of the microbubble, from which both mechanical and electrical parameters can be extracted. These parameters are used to provide a signature of the analyte. This paper presents acoustic and electrical models of the microbubbles, with the effect of shell parameters being thoroughly discussed. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the novel nanocrystalline film ZnO surface acoustic wave devices, which demonstrate their great potential for the portable disease diagnostic system with integrated functions of microfluidic transport, mixing and biosensing. The devices can be easily integrated with electronic control circuitry and fabricated with low temperature process on Si, glass or even polymer substrates. The liquid convection and internal streaming patterns was easily induced by acoustic wave at signal voltages. With further increase in applied voltage to above 20V, the liquid droplet was pushed forward. Immunoreaction-based bio-detection PSA/ACT, all based on SAW devices on thin film piezoelectric ZnO on Si substrate was demonstrated. © 2009 CBMS.