9 resultados para Glow discharge mass spectrum

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

LIMA (Laser-induced Ion Mass Analysis) is a new technique capable of compositional analysis of thin films and surface regions. Under UHV conditions a focused laser beam evaporates and ionizes a microvolume of specimen material from which a mass spectrum is obtained. LIMA has been used to examine a range of thin film materials with applications in electronic devices. The neutral photon probe avoids charging problems, and low conductivity materials are examined without prior metallization. Analyses of insulating silicon oxides, nitrides, and oxynitrides confirm estimates of composition from infrared measurements. However, the hydrogen content of hydrogenated amorphous silicon (a-Si : H) found by LIMA shows no correlation with values given by infrared absorption analysis. Explanations are proposed and discussed. © 1985.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents results of a feasibility study aimed at developing a zero-transuranic-discharge fuel cycle based on the U-Th-TRU ternary cycle. The design objective is to find a fuel composition (mixture of thorium, enriched uranium, and recycled transuranic components) and fuel management strategy resulting in an equilibrium charge-discharge mass flow. In such a fuel cycle scheme, the quantity and isotopic vector of the transuranium (TRU) component is identical at the charge and discharge time points, thus allowing the whole amount of the TRU at the end of the fuel irradiation period to be separated and reloaded into the following cycle. The TRU reprocessing activity losses are the only waste stream that will require permanent geological storage, virtually eliminating the long-term radiological waste of the commercial nuclear fuel cycle. A detailed three-dimensional full pressurized water reactor (PWR) core model was used to analyze the proposed fuel composition and management strategy. The results demonstrate the neutronic feasibility of the fuel cycle with zero-TRU discharge. The amount of TRU and enriched uranium loaded reach equilibrium after about four TRU recycles. The reactivity coefficients were found to be within a range typical for a reference PWR core. The soluble boron worth is reduced by a factor of ∼2 from a typical PWR value. Nevertheless, the results indicate the feasibility of an 18-month fuel cycle design with an acceptable beginning-of-cycle soluble boron concentration even without application of burnable poisons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite intensive research on optimizing the methods for depositing carbon encapsulated ferromagnetic nanoparticles, the effect of the carbon cages remains unclear. In the present work, the effect of the graphitic cages on the magnetization of the ferromagnetic core has been studied by comparing the magnetic properties of pure and carbon encapsulated Ni particles of the same size. The carbon encapsulated Ni particles were formed using an electric arc discharge in de-ionized water between a solid graphite cathode and an anode consisting of Ni and C in a mass ratio of Ni:C = 7:3. This method is shown to have potential for low cost production of carbon encapsulated Ni nanoparticle samples with narrow particle size distributions. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis were used to study the crystallography, morphology, and size distribution of the encapsulated and pure Ni nanoparticle samples. The availability of encapsulated particles with various sizes allowed us to elucidate the role of carbon cages in size-dependent properties. Our data suggest that even though encapsulation is beneficial for protection against hostile chemical environments and for avoiding low proximity phenomena, it suppresses the saturation magnetization of the Ni cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shallow water equations are widely used in modelling environmental flows. Being a hyperbolic system of differential equations, they admit shocks that represent hydraulic jumps and bores. Although the water surface can be solved satisfactorily with the modern shock-capturing schemes, the predicted flow rate often suffers from imbalances where shocks occur, eg the mass conservation is violated by failing to maintain a constant discharge rate at every cross-section in a steady open channel flow. A total-variation-diminishing Lax-Wendroff scheme is developed, and used to demonstrate how to achieve an exact flux balance. The performance of the proposed methods is inspected through some test cases, which include 1- and 2-dimensional, flat and irregular bed scenarios. The proposed methods are shown to preserve the mass exactly, and can be easily extended to other shock-capturing models.