61 resultados para Gibbs Sampling
em Cambridge University Engineering Department Publications Database
Resumo:
This paper compares parallel and distributed implementations of an iterative, Gibbs sampling, machine learning algorithm. Distributed implementations run under Hadoop on facility computing clouds. The probabilistic model under study is the infinite HMM [1], in which parameters are learnt using an instance blocked Gibbs sampling, with a step consisting of a dynamic program. We apply this model to learn part-of-speech tags from newswire text in an unsupervised fashion. However our focus here is on runtime performance, as opposed to NLP-relevant scores, embodied by iteration duration, ease of development, deployment and debugging. © 2010 IEEE.
Resumo:
This paper proposes a Bayesian method for polyphonic music description. The method first divides an input audio signal into a series of sections called snapshots, and then estimates parameters such as fundamental frequencies and amplitudes of the notes contained in each snapshot. The parameter estimation process is based on a frequency domain modelling and Gibbs sampling. Experimental results obtained from audio signals of test note patterns are encouraging; the accuracy is better than 80% for the estimation of fundamental frequencies in terms of semitones and instrument names when the number of simultaneous notes is two.
Resumo:
This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based on Gibbs sampling and one based on variational Bayes. Importantly, these algorithms may be implemented in the factorization of very large matrices with missing entries. The model is evaluated on a collaborative filtering task, where users have rated a collection of movies and the system is asked to predict their ratings for other movies. The Netflix data set is used for evaluation, which consists of around 100 million ratings. Using root mean-squared error (RMSE) as an evaluation metric, results show that the suggested model outperforms alternative factorization techniques. Results also show how Gibbs sampling outperforms variational Bayes on this task, despite the large number of ratings and model parameters. Matlab implementations of the proposed algorithms are available from cogsys.imm.dtu.dk/ordinalmatrixfactorization.
Resumo:
We present methods for fixed-lag smoothing using Sequential Importance sampling (SIS) on a discrete non-linear, non-Gaussian state space system with unknown parameters. Our particular application is in the field of digital communication systems. Each input data point is taken from a finite set of symbols. We represent transmission media as a fixed filter with a finite impulse response (FIR), hence a discrete state-space system is formed. Conventional Markov chain Monte Carlo (MCMC) techniques such as the Gibbs sampler are unsuitable for this task because they can only perform processing on a batch of data. Data arrives sequentially, so it would seem sensible to process it in this way. In addition, many communication systems are interactive, so there is a maximum level of latency that can be tolerated before a symbol is decoded. We will demonstrate this method by simulation and compare its performance to existing techniques.
Resumo:
Many probabilistic models introduce strong dependencies between variables using a latent multivariate Gaussian distribution or a Gaussian process. We present a new Markov chain Monte Carlo algorithm for performing inference in models with multivariate Gaussian priors. Its key properties are: 1) it has simple, generic code applicable to many models, 2) it has no free parameters, 3) it works well for a variety of Gaussian process based models. These properties make our method ideal for use while model building, removing the need to spend time deriving and tuning updates for more complex algorithms.
Resumo:
We present a stochastic simulation technique for subset selection in time series models, based on the use of indicator variables with the Gibbs sampler within a hierarchical Bayesian framework. As an example, the method is applied to the selection of subset linear AR models, in which only significant lags are included. Joint sampling of the indicators and parameters is found to speed convergence. We discuss the possibility of model mixing where the model is not well determined by the data, and the extension of the approach to include non-linear model terms.