14 resultados para Gesture
em Cambridge University Engineering Department Publications Database
Resumo:
This Chapter presents a vision-based system for touch-free interaction with a display at a distance. A single camera is fixed on top of the screen and is pointing towards the user. An attention mechanism allows the user to start the interaction and control a screen pointer by moving their hand in a fist pose directed at the camera. On-screen items can be chosen by a selection mechanism. Current sample applications include browsing video collections as well as viewing a gallery of 3D objects, which the user can rotate with their hand motion. We have included an up-to-date review of hand tracking methods, and comment on the merits and shortcomings of previous approaches. The proposed tracker uses multiple cues, appearance, color, and motion, for robustness. As the space of possible observation models is generally too large for exhaustive online search, we select models that are suitable for the particular tracking task at hand. During a training stage, various off-the-shelf trackers are evaluated. From this data differentmethods of fusing them online are investigated, including parallel and cascaded tracker evaluation. For the case of fist tracking, combining a small number of observers in a cascade results in an efficient algorithm that is used in our gesture interface. The system has been on public display at conferences where over a hundred users have engaged with it. © 2010 Springer-Verlag Berlin Heidelberg.
Resumo:
We introduce a conceptually novel structured prediction model, GPstruct, which is kernelized, non-parametric and Bayesian, by design. We motivate the model with respect to existing approaches, among others, conditional random fields (CRFs), maximum margin Markov networks (M3N), and structured support vector machines (SVMstruct), which embody only a subset of its properties. We present an inference procedure based on Markov Chain Monte Carlo. The framework can be instantiated for a wide range of structured objects such as linear chains, trees, grids, and other general graphs. As a proof of concept, the model is benchmarked on several natural language processing tasks and a video gesture segmentation task involving a linear chain structure. We show prediction accuracies for GPstruct which are comparable to or exceeding those of CRFs and SVMstruct.