3 resultados para Genome-specific Sequence

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytosine methylation is important for transposon silencing and epigenetic regulation of endogenous genes, although the extent to which this DNA modification functions to regulate the genome is still unknown. Here we report the first comprehensive DNA methylation map of an entire genome, at 35 base pair resolution, using the flowering plant Arabidopsis thaliana as a model. We find that pericentromeric heterochromatin, repetitive sequences, and regions producing small interfering RNAs are heavily methylated. Unexpectedly, over one-third of expressed genes contain methylation within transcribed regions, whereas only approximately 5% of genes show methylation within promoter regions. Interestingly, genes methylated in transcribed regions are highly expressed and constitutively active, whereas promoter-methylated genes show a greater degree of tissue-specific expression. Whole-genome tiling-array transcriptional profiling of DNA methyltransferase null mutants identified hundreds of genes and intergenic noncoding RNAs with altered expression levels, many of which may be epigenetically controlled by DNA methylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-throughput DNA sequencing (HTS) instruments today are capable of generating millions of sequencing reads in a short period of time, and this represents a serious challenge to current bioinformatics pipeline in processing such an enormous amount of data in a fast and economical fashion. Modern graphics cards are powerful processing units that consist of hundreds of scalar processors in parallel in order to handle the rendering of high-definition graphics in real-time. It is this computational capability that we propose to harness in order to accelerate some of the time-consuming steps in analyzing data generated by the HTS instruments. We have developed BarraCUDA, a novel sequence mapping software that utilizes the parallelism of NVIDIA CUDA graphics cards to map sequencing reads to a particular location on a reference genome. While delivering a similar mapping fidelity as other mainstream programs , BarraCUDA is a magnitude faster in mapping throughput compared to its CPU counterparts. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the mapping throughput. BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the mapping of millions of sequencing reads generated by HTS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available at http://seqbarracuda.sf.net