9 resultados para Generalised Additive Model

em Cambridge University Engineering Department Publications Database


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transient flows in a confined ventilated space induced by a buoyancy source of time-varying strength and an external wind are examined. The space considered has varying cross-sectional area with height. A generalised theoretical model is proposed to investigate the flow dynamics following the activation of an external wind and an internal source of buoyancy. To investigate the effect of geometry, we vary the angle of the wall inclination of a particular geometry in which a point source of constant buoyancy is activated in the absence of wind. Counter-intuitively the ventilation is worse and lower airflow rates are established for geometries of increasing cross-sectional areas with height. We investigate the effect of the source buoyancy strength by comparing two cases: (1) when the buoyancy input is constant and (2) when the buoyancy input gradually increases over time so that after a finite time the total buoyancy inputs for (1) and (2) are identical. The rate at which the source heat gains are introduced has a significant role on the flow behaviour as we find that, in case (2), a warmer layer and a more pronounced overshoot are obtained than in case (1). The effect of assisting and opposing wind on the transient ventilation of an enclosure of constant cross-sectional area with height and constant heat gains is examined. A Froude number Fr is used to define the relative strengths of the buoyancy-induced and wind-induced velocities and five different transient states and their associated critical Fr are identified. © 2010 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Model-based approaches to handle additive and convolutional noise have been extensively investigated and used. However, the application of these schemes to handling reverberant noise has received less attention. This paper examines the extension of two standard additive/convolutional noise approaches to handling reverberant noise. The first is an extension of vector Taylor series (VTS) compensation, reverberant VTS, where a mismatch function including reverberant noise is used. The second scheme modifies constrained MLLR to allow a wide-span of frames to be taken into account and projected into the required dimensionality. To allow additive noise to be handled, both these schemes are combined with standard VTS. The approaches are evaluated and compared on two tasks, MC-WSJ-AV, and a reverberant simulated version of AURORA-4. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a stochastic process with Wishart marginals: the generalised Wishart process (GWP). It is a collection of positive semi-definite random matrices indexed by any arbitrary dependent variable. We use it to model dynamic (e.g. time varying) covariance matrices. Unlike existing models, it can capture a diverse class of covariance structures, it can easily handle missing data, the dependent variable can readily include covariates other than time, and it scales well with dimension; there is no need for free parameters, and optional parameters are easy to interpret. We describe how to construct the GWP, introduce general procedures for inference and predictions, and show that it outperforms its main competitor, multivariate GARCH, even on financial data that especially suits GARCH. We also show how to predict the mean of a multivariate process while accounting for dynamic correlations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks.