18 resultados para General Systems Theory
em Cambridge University Engineering Department Publications Database
Resumo:
Dissipativity is an essential concept of systems theory. The paper provides an extension of dissipativity, named differential dissipativity, by lifting storage functions and supply rates to the tangent bundle. Differential dissipativity is connected to incremental stability in the same way as dissipativity is connected to stability. It leads to a natural formulation of differential passivity when restricting to quadratic supply rates. The paper also shows that the interconnection of differentially passive systems is differentially passive, and provides preliminary examples of differentially passive electrical systems. © IFAC.
Resumo:
The study of exchange markets dates back to LeonWalras's general equilibrium theory. Since then the economic market has been studied for its' equilibrium properties, fairness of allocations of private and public goods, and even the psychological incentives of participants. This paper studies the dynamics of an exchange economy built on a network of markets where consumers trade with suppliers to optimize utility. Viewing the market in as a decentralized network we study the system from the usual control theory point of view, evaluating the system's dynamic performance, stability and robustness. It is shown that certain consumer demand dynamics can lead to oscillations while others can converge to optimal allocations. © 2011 IFAC.
Resumo:
We consider finite-horizon LQR control with limited controller-system communication. Within a time-horizon T , the controller can only communicate with the system d
Resumo:
The Chinese Tam-Tam exhibits non-linear behavior in its vibro-acoustic response. The frequency content of the response during free, unforced vibration smoothly changes, with energy being progressively smeared out over a greater bandwidth with time. This is used as a motivating case for the general study of the phenomenon of energy cascading through weak nonlinearity. Numerical models based upon the Fermi-Pasta-Ulam system of non-linearly coupled oscillators, modified with the addition of damping, have been developed. These were used to study the response of ensembles of systems with randomized natural frequencies. Results from simulations will be presented here. For un-damped systems, individual ensemble members exhibit cyclical energy exchange between linear modes, but the ensemble average displays a steady state. For the ensemble response of damped systems, lightly damped modes can exhibit an effective damping which is higher than predicated by linear theory. The presence of a non-linearity provides a path for energy flow to other modes, increasing the apparent damping spectrum at some frequencies and reducing it at others. The target of this work is a model revealing the governing parameters of a generic system of this type and leading to predictions of the ensemble response.
Resumo:
Presenting a control-theoretic treatment of stoichiometric systems, ... local parametric sensitivity analysis, the two approaches yield identical results. ...