16 resultados para Garbage compound

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gd-Ba-Cu-O (GdBCO) single grains have been previously melt-processed successfully in air using a generic Mg-Nd-Ba-Cu-O (Mg-NdBCO) seed crystal. Previous research has revealed that the addition of a small amount of BaO 2 to the precursor powders prior to melt processing can suppress the formation of Gd/Ba solid solution, and lead to a significant improvement in superconducting properties of the single grains. Research into the effects of a higher Ba content on single grain growth, however, has been limited by the relatively small grain size in the earlier studies. This has been addressed by developing Ba-rich precursor compounds Gd-163 and Gd-143, fabricated specifically to enable the presence of greater concentrations of Ba during the melt process. In this study, we propose a new processing route for the fabrication of high performance GdBCO single grain bulk superconductors in air by enriching the precursor powder with these new Ba rich compounds. The influence of the addition of the new compounds on the microstructures and superconducting properties of GdBCO single grains is reported. © 2008 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaAs and InP based III-V compound semiconductor nanowires were grown epitaxially on GaAs (or Si) (111)B and InP (111)B substrates, respectively, by metalorganic chemical vapor deposition using Au nanoparticles as catalyst. In this paper, we will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters on the crystal structure and optical properties of various nanowires were studied in detail. We have successfully obtained defect-free GaAs nanowires with nearly intrinsic exciton lifetime and vertical straight nanowires on Si (111)B substrates. The crystal structure of InP nanowires, i.e., WZ or ZB, can also be engineered by carefully controlling the V/III ratio and catalyst size. © 2011 World Scientific Publishing Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InP and GaAs based nanowires were grown epitaxially on InP or GaAs (111)B substrates by metalorganic chemical vapor deposition via vapor-liquid-solid (VLS) mechanism. In this report, I will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters for InP and GaAs nanowires on the crystal quality have been studied in detail. We demonstrated the ability to obtain defect-free GaAs nanowires and control the crystal structure of InP nanowires, ie, WZ or ZB, by choosing a combination of growth parameters, such as temperature, V/III ratio and nanowire diameter. © 2009 IEEE NANO Organizers.