2 resultados para Ganglion-cells
em Cambridge University Engineering Department Publications Database
Resumo:
We have investigated whether inkjet printing technology can be extended to print cells of the adult rat central nervous system (CNS), retinal ganglion cells (RGC) and glia, and the effects on survival and growth of these cells in culture, which is an important step in the development of tissue grafts for regenerative medicine, and may aid in the cure of blindness. We observed that RGC and glia can be successfully printed using a piezoelectric printer. Whilst inkjet printing reduced the cell population due to sedimentation within the printing system, imaging of the printhead nozzle, which is the area where the cells experience the greatest shear stress and rate, confirmed that there was no evidence of destruction or even significant distortion of the cells during jet ejection and drop formation. Importantly, the viability of the cells was not affected by the printing process. When we cultured the same number of printed and non-printed RGC/glial cells, there was no significant difference in cell survival and RGC neurite outgrowth. In addition, use of a glial substrate significantly increased RGC neurite outgrowth, and this effect was retained when the cells had been printed. In conclusion, printing of RGC and glia using a piezoelectric printhead does not adversely affect viability and survival/growth of the cells in culture. Importantly, printed glial cells retain their growth-promoting properties when used as a substrate, opening new avenues for printed CNS grafts in regenerative medicine.
Resumo:
Peripheral nerve damage is a problem encountered after trauma and during surgery and the development of synthetic polymer conduits may offer a promising alternative to autografts. In order to improve the performance of the polymer to be used for nerve conduits, poly-ε-caprolactone (PCL) films were chemically functionalized with RGD moieties, using a chemical reaction previously developed. In vitro cultures of dissociated dorsal root ganglion (DRG) neurons provide a valid model to study different factors affecting axonal growth. In this work, DRG neurons were cultured on RGD-functionalized PCL films. Adult adipose-derived stem cells differentiated to Schwann cells (dASCs) were initially cultured on the functionalized PCL films, resulting in improved attachment and proliferation. dASCs were also co-cultured with DRG neurons on treated and untreated PCL to assess stimulation by dASCs on neurite outgrowth. Neuron response was generally poor on untreated PCL films, but long neurites were observed in the presence of dASCs or RGD moieties. A combination of the two factors enhanced even further neurite outgrowth, acting synergistically. Finally, in order to better understand the extracellular matrix (ECM)-cell interaction, a β1 integrin blocking experiment was carried out. Neurite outgrowth was not affected by the specific antibody blocking, showing that β1 integrin function can be compensated by other molecules present on the cell membrane. Copyright © 2013 John Wiley & Sons, Ltd.