5 resultados para GENETIC SYSTEM
em Cambridge University Engineering Department Publications Database
Resumo:
Choosing a project manager for a construction project—particularly, large projects—is a critical project decision. The selection process involves different criteria and should be in accordance with company policies and project specifications. Traditionally, potential candidates are interviewed and the most qualified are selected in compliance with company priorities and project conditions. Precise computing models that could take various candidates’ information into consideration and then pinpoint the most qualified person with a high degree of accuracy would be beneficial. On the basis of the opinions of experienced construction company managers, this paper, through presenting a fuzzy system, identifies the important criteria in selecting a project manager. The proposed fuzzy system is based on IF-THEN rules; a genetic algorithm improves the overall accuracy as well as the functions used by the fuzzy system to make initial estimates of the cluster centers for fuzzy c-means clustering. Moreover, a back-propagation neutral network method was used to train the system. The optimal measures of the inference parameters were identified by calculating the system’s output error and propagating this error within the system. After specifying the system parameters, the membership function parameters—which by means of clustering and projection were approximated—were tuned with the genetic algorithm. Results from this system in selecting project managers show its high capability in making high-quality personnel predictions
Resumo:
A multi-disciplinary team based at Heriot-Watt University and other Universities has been set up to tackle the design and manufacturing of lab-on-a-chip for industries as one of the demonstrators of the EPSRC Grand Challenge project "3D-Mintegration". The team focuses on the analysis of foetal genetic material extracted from maternal blood as a smart alternative to invasive prenatal testing such as amniocentesis. The first module of the microsystem envisaged achieves a separation of blood cells from plasma. This system permits the testing of different manufacturing techniques.
Resumo:
Piezoelectric systems are viewed as a promising approach to energy harvesting from environmental vibrations. The energy harvested from real vibration sources is usually difficult to estimate analytically. Therefore, it is hard to optimise the associated energy harvesting system. This work investigates the optimisation of a piezoelectric cantilever system using a genetic algorithm based approach with numerical simulations. The genetic algorithm globally considers the effects of each parameter to produce an optimal frequency response to scavenge more energy from the real vibrations while the conventional sinusoidal based method can only optimise the resistive load for a given resonant frequency. Experimental acceleration data from the vibrations of a vehicle-excited manhole cover demonstrates that the optimised harvester automatically selects the right frequency and also synchronously optimises the damper and the resistive load. This method shows great potential for optimizing the energy harvesting systems with real vibration data. ©2009 IEEE.
Resumo:
Multi-objective Genetic Algorithms have become a popular choice to aid in optimising the size of the whole hybrid power train. Within these optimisation processes, other optimisation techniques for the control strategy are implemented. This optimisation within an optimisation requires many simulations to be run, so reducing the computational cost is highly desired. This paper presents an optimisation framework consisting of a series hybrid optimisation algorithm, in which a global search optimizes a submarine propulsion system using low-fidelity models and, in order to refine the results, a local search is used with high-fidelity models. The effectiveness of the Hybrid optimisation algorithm is demonstrated with the optimisation of a submarine propulsion system. © 2011 EPE Association - European Power Electr.