1 resultado para GAMMA-GENERALIZED DISTRIBUTION
em Cambridge University Engineering Department Publications Database
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (18)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (9)
- Center for Jewish History Digital Collections (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (16)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons @ DU | University of Denver Research (1)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (48)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (49)
- Indian Institute of Science - Bangalore - Índia (213)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (1)
- National Center for Biotechnology Information - NCBI (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (11)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (14)
- Queensland University of Technology - ePrints Archive (416)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (38)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad del Rosario, Colombia (1)
- Universidade Complutense de Madrid (3)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal (1)
- Université de Montréal, Canada (8)
- University of Connecticut - USA (1)
- University of Michigan (4)
- University of Queensland eSpace - Australia (8)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
In a companion paper (McRobie(2013) arxiv:1304.3918), a simple set of `elemental' estimators was presented for the Generalized Pareto tail parameter. Each elemental estimator: involves only three log-spacings; is absolutely unbiased for all values of the tail parameter; is location- and scale-invariant; and is valid for all sample sizes $N$, even as small as $N= 3$. It was suggested that linear combinations of such elementals could then be used to construct efficient unbiased estimators. In this paper, the analogous mathematical approach is taken to the Generalised Extreme Value (GEV) distribution. The resulting elemental estimators, although not absolutely unbiased, are found to have very small bias, and may thus provide a useful basis for the construction of efficient estimators.