7 resultados para Future Needs
em Cambridge University Engineering Department Publications Database
Resumo:
Growing environmental concerns caused by natural resource depletion and pollution need to be addressed. One approach to these problems is Sustainable Development, a key concept for our society to meet present as well as future needs worldwide. Manufacturing clearly has a major role to play in the move towards a more sustainable society. However it appears that basic principles of environmental sustainability are not systematically applied, with practice tending to focus on local improvements. The aim of the work presented in this paper is to adopt a more holistic view of the factory unit to enable opportunities for wider improvement. This research analyses environmental principles and industrial practice to develop a conceptual manufacturing ecosystem model as a foundation to improve environmental performance. The model developed focuses on material, energy and waste flows to better understand the interactions between manufacturing operations, supporting facilities and surrounding buildings. The research was conducted in three steps: (1) existing concepts and models for industrial sustainability were reviewed and environmental practices in manufacturing were collected and analysed; (2) gaps in knowledge and practice were identified; (3) the outcome is a manufacturing ecosystem model based on industrial ecology (IE). This conceptual model has novelty in detailing IE application at factory level and integrating all resource flows. The work is a base on which to build quantitative modelling tools to seek integrated solutions for lower resource input, higher resource productivity, fewer wastes and emissions, and lower operating cost within the boundary of a factory unit. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Nanoindentation techniques have recently been adapted for the study of biological materials. This feature will consider the experimental adaptations required for such studies. Following a brief review of the structure and constitutive behavior of biological materials, we examine the experimental aspects in detail, including working with hydrated samples, time-dependent mechanical behavior and extremely compliant materials. The analysis of experimental data, consistent with the constitutive response of the material, will then be treated. Examples of nanoindentation data collected using commercially-available instruments are shown, including nanoindentation creep curves of biological materials and relaxation responses of biomimetic hydrogels. Finally, we conclude by examining the current state and future needs of the biological nanoindentation community. © 2011, Society for Experimental Mechanics.
Resumo:
This paper focuses on document data, one of the most significant sources for technology intelligence. To help organisations use their knowledge in documents effectively, this research aims to identify what organizations really want from documents and what might be possible to obtain from them. The research involves a literature review, a series of in-depth/on-site interviews and a descriptive analysis of document mining applications. The output of the research includes: a document mining framework; an analysis of the current condition of document mining in technology-based organisations together with their future requirements; and guidelines for introducing document mining into an organisation along with a discussion on the practical issues that are faced by users. Copyright © 2011 Inderscience Enterprises Ltd.
Resumo:
Uniquely, China employs MgO already contained in cement clinker or as an expansive additive to compensate for the thermal shrinkage of mass concrete, particularly dam concrete, with almost 40 years' experience in both research activities and industrial applications. Compensating shrinkage with expansion produced by MgO has been proved to effectively prevent thermal cracking of mass concrete, and reduce the cost of temperature control measures and speed up the construction process. Moreover, the expansion properties of MgO could be designed flexibly, through adjusting its microstructure by changing the calcination conditions (calcining temperature and residence time). The collective knowledge and experience of MgO expansive cement and concrete is worthy of sharing with relevant engineers and researchers globally but dissemination has been hindered as most of the relevant literature is published in Chinese. This paper reviews the history, state-of-the-art progress and future research needs in the field of MgO expansive cement and concrete. © 2013 Elsevier Ltd.