15 resultados para Frequent infant exposure to high fat and high sugar foods

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of the injection and recombination processes in InGaN/GaN LEDs is governed by the properties of the active region of the devices, which strongly depend on the conditions used for the growth of the epitaxial material. To improve device quality, it is very important to understand how the high temperatures used during the growth process can modify the quality of the epitaxial material. With this paper we present a study of the modifications in the properties of InGaN/GaN LED structures induced by high temperature annealing: thermal stress tests were carried out at 900 °C, in nitrogen atmosphere, on selected samples. The efficiency and the recombination dynamics were evaluated by photoluminescence measurements (both integrated and time-resolved), while the properties of the epitaxial material were studied by Secondary Ion Mass Spectroscopy (SIMS) and Rutherford Backscattering (RBS) channeling measurements. Results indicate that exposure to high temperatures may lead to: (i) a significant increase in the photoluminescence efficiency of the devices; (ii) a decrease in the parasitic emission bands located between 380 nm and 400 nm; (iii) an increase in carrier lifetime, as detected by time-resolved photoluminescence measurements. The increase in device efficiency is tentatively ascribed to an improvement in the crystallographic quality of the samples. © 2013 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intracellular replication within specialized vacuoles and cell-to-cell spread in the tissue are essential for the virulence of Salmonella enterica. By observing infection dynamics at the single-cell level in vivo, we have discovered that the Salmonella pathogenicity island 2 (SPI-2) type 3 secretory system (T3SS) is dispensable for growth to high intracellular densities. This challenges the concept that intracellular replication absolutely requires proteins delivered by SPI-2 T3SS, which has been derived largely by inference from in vitro cell experiments and from unrefined measurement of net growth in mouse organs. Furthermore, we infer from our data that the SPI-2 T3SS mediates exit from infected cells, with consequent formation of new infection foci resulting in bacterial spread in the tissues. This suggests a new role for SPI-2 in vivo as a mediator of bacterial spread in the body. In addition, we demonstrate that very similar net growth rates of attenuated salmonellae in organs can be derived from very different underlying intracellular growth dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic response of end-clamped sandwich and monolithic beams of equal areal mass subjected to loading via high-velocity slugs of dry and water-saturated sand is measured using a novel laboratory-based method. The sandwich beams comprise aluminium face sheets and an aluminium honeycomb core: the effect of sandwich core strength and beam thickness on the dynamic beam deflection is investigated by varying the orientation and height of the anisotropic aluminium honeycomb core material. High-speed imaging is used to measure the transient transverse deflection of the beams and to record the dynamic modes of deformation. The measurements show that sandwich beams with thick, strong cores are optimal and that these beams significantly outperform monolithic beams of equal mass. The water-saturated sand slugs cause significantly higher deflections compared to the dry sand slugs having the same mean slug velocity and we demonstrate that this enhanced deflection is due to the larger mass of the water-saturated slugs. Finally, we show that the impact of sand slugs is equivalent to the impact of a crushable foam projectile. The experiments using foam projectiles are significantly simpler to perform and thus represent a more convenient laboratory technique. © 2014 Elsevier Ltd. All rights reserved.