9 resultados para Frequency upconversion process
em Cambridge University Engineering Department Publications Database
Resumo:
A new interpolation technique has been developed for replacing missing samples in a sampled waveform drawn from a stationary stochastic process, given the power spectrum for the process. The method works with a finite block of data and is based on the assumption that components of the block DFT are Gaussian zero-mean independent random variables with variance proportional to the power spectrum at each frequency value. These assumptions make the interpolator particularly suitable for signals with a sharply-defined harmonic structure, such as audio waveforms recorded from music or voiced speech. Some results are presented and comparisons are made with existing techniques.
Resumo:
A high voltage integrated circuit (HVIC) switch designed as a building block for power converters operating up to 13.56 MHz from off-line voltages is presented. A CMOS-compatible, 500 V power device process is used to integrate control circuitry with a high-speed MOS gate driver and high voltage lateral power MOSFET. Fabrication of the HVIC switches has proceeded in two stages. The first batch of devices showed switching times of less than 5 ns for the power switch and good high frequency performance of a level-shifter for driving half bridge converters. In the second phase, a switch that monolithically integrates all the elements required to form a complete high-frequency converter has been designed.
Resumo:
In multi-carrier systems, small carrier frequency offsets result in significant degradation of performance and this offset should be compensated before demodulation can be performed. In this paper, we consider a generic multi-carrier system with pulse shaping and estimate the frequency offset by exploiting the cyclostationarity of the received signal. By transforming the time domain signal to the cyclic correlation domain we are able to estimate the frequency offset without the aid of pilot symbols or the cyclic prefix. The Bayesian framework is used to obtain the estimate and we show how we can simplify the estimation process. © 1999 IEEE.
Resumo:
This paper proposes a Bayesian method for polyphonic music description. The method first divides an input audio signal into a series of sections called snapshots, and then estimates parameters such as fundamental frequencies and amplitudes of the notes contained in each snapshot. The parameter estimation process is based on a frequency domain modelling and Gibbs sampling. Experimental results obtained from audio signals of test note patterns are encouraging; the accuracy is better than 80% for the estimation of fundamental frequencies in terms of semitones and instrument names when the number of simultaneous notes is two.
Resumo:
Automated Identification and in particular, Radio Frequency Identification (RFID) promises to assist with the automation of mass customised production processes. RFID has long been used to gather a history or trace of part movements, but the use of it as an integral part of the control process is yet to be fully exploited. Such use places stringent demands on the quality of the sensor data and the method used to interpret that data. in particular, this paper focuses on the issue of correctly identifying, tracking and dealing with aggregated objects with the use of RFID. The presented approach is evaluated in the context of a laboratory manufacturing system that produces customised gift boxes. Copyright © 2005 IFAC.
Resumo:
High-frequency ultrasound is needed for medical imaging with high spatial resolution. A key issue in the development of ultrasound imaging arrays to operate at high frequencies (≥30 MHz) is the need for photolithographic patterning of array electrodes. To achieve this directly on 1-3 piezocomposite, the material requires not only planar, parallel, and smooth surfaces, but also an epoxy composite filler that is resistant to chemicals, heat, and vacuum. This paper reports, first, on the surface finishing of 1-3 piezocomposite materials by lapping and polishing. Excellent surface flatness has been obtained, with an average surface roughness of materials as low as 3 nm and step heights between ceramic/polymer of ∼80 nm. Subsequently, high-frequency array elements were patterned directly on top of these surfaces using a photolithography process. A 30-MHz linear array electrode pattern with 50-μm element pitch has been patterned on the lapped and polished surface of a high-frequency 1-3 piezocomposite. Excellent electrode edge definition and electrical contact to the composite were obtained. The composite has been lapped to a final thickness of ∼55 μm. Good adhesion of electrodes on the piezocomposite has been achieved and electrical impedance measurements have demonstrated their basic functionality. The array was then packaged, and acoustic pulse-echo measurements were performed. These results demonstrate that direct patterning of electrodes by photolithography on 1-3 piezocomposite is feasible for fabrication of high-frequency ultrasound arrays. Furthermore, this method is more conducive to mass production than other reported array fabrication techniques.
Resumo:
This paper presents a numerical study of the impact of process-induced variations on the achievable motional resistance Rx of one-dimensional, cyclic and cross-coupled architectures of electrostatically transduced MEMS resonators operating in the 250 kHz range. Monte Carlo numerical simulations which accounted for up to 0.75% variation in critical resonator feature sizes were initiated on 1, 2, 3, 4, 5 and 9 coupled MEMS resonators for three distinct coupling architectures. Improvements of 100X in the spread of Rx and 2.7X in mean achievable Rx are reported for the case of 9 resonators when implemented in the cross-coupled topology, as opposed to the traditional one-dimensional chain. © 2013 IEEE.