15 resultados para Founder Event
em Cambridge University Engineering Department Publications Database
Resumo:
This paper discusses the application of Discrete Event Simulation (DES) in modelling the complex relationship between patient types, case-mix and operating theatre allocation in a large National Health Service (NHS) Trust in London. The simulation model that was constructed described the main features of nine theatres, focusing on operational processes and patient throughput times. The model was used to test three scenarios of case-mix and to demonstrate the potential of using simulation modelling as a cost effective method for understanding the issues of healthcare operations management and the role of simulation techniques in problem solving. The results indicated that removing all day cases will reduce patient throughput by 23.3% and the utilization of the orthopaedic theatre in particular by 6.5%. This represents a case example of how DES can be used by healthcare managers to inform decision making. © 2008 IEEE.
Resumo:
Cell biology is characterised by low molecule numbers and coupled stochastic chemical reactions with intrinsic noise permeating and dominating the interactions between molecules. Recent work [9] has shown that in such environments there are hard limits on the accuracy with which molecular populations can be controlled and estimated. These limits are predicated on a continuous diffusion approximation of the target molecule (although the remainder of the system is non-linear and discrete). The principal result of [9] assumes that the birth rate of the signalling species is linearly dependent on the target molecule population size. In this paper, we investigate the situation when the entire system is kept discrete, and arbitrary non-linear coupling is allowed between the target molecule and downstream signalling molecules. In this case it is possible, by relying solely on the event triggered nature of control and signalling reactions, to define non-linear reaction rate modulation schemes that achieve improved performance in certain parameter regimes. These schemes would not appear to be biologically relevant, raising the question of what are an appropriate set of assumptions for obtaining biologically meaningful results. © 2013 EUCA.