12 resultados para Forest roads
em Cambridge University Engineering Department Publications Database
Resumo:
A highly sensitive nonenzymatic amperometric glucose sensor was fabricated by using Ni nanoparticles homogeneously dispersed within and on the top of a vertically aligned CNT forest (CNT/Ni nanocomposite sensor), which was directly grown on a Si/SiO2 substrate. The surface morphology and elemental analysis were characterized using scanning electron microscopy and energy dispersive spectroscopy, respectively. Cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activities of CNT/Ni electrode. The CNT/Ni nanocomposite sensor exhibited a great enhancement of anodic peak current after adding 5 mM glucose in alkaline solution. The sensor can also be applied to the quantification of glucose content with a linear range covering from 5 μM to 7 mM, a high sensitivity of 1433 μA mM-1 cm-2, and a low detection limit of 2 μM. The CNT/Ni nanocomposite sensor exhibits good reproducibility and long-term stability, moreover, it was also relatively insensitive to commonly interfering species, such as uric acid, ascorbic acid, acetaminophen, sucrose and d-fructose. © 2013 Elsevier B.V.
Resumo:
This paper discusses road damage caused by heavy commercial vehicles. Chapter 1 presents some important terminology and a brief historical review of road construction and vehicle-road interaction, from ancient times to the present day. The main types of vehicle-generated road damage, and the methods that are used by pavement engineers to analyze them are discussed in Chapter 2. Attention is also given to the main features of the response of road surfaces to vehicle loads and mathematical models that have been developed to predict road response. Chapter 3 reviews the effects on road damage of vehicle features which can be studied without consideration of vehicle dynamics. These include gross vehicle weight, axle and tire configurations, tire contact conditions and static load sharing in axle group suspensions. The dynamic tire forces generated by heavy vehicles are examined in Chapter 4. The discussion includes their simulation and measurement, their principal characteristics, the effects of tires and suspension design on dynamic forces, and the potential benefits of using advanced suspensions for minimizing dynamic tire forces. Chapter 5 discusses methods for estimating the effects of dynamic tire forces on road damage. The two main approaches are either to examine the statistics of the forces themselves; or to calculate the response of a pavement model to the forces, and to calculate the resulting wear using a material damage model. The issues involved in assessing vehicles for 'road friendliness' are discussed in Chapter 6. Possible assessment methods include measuring strains in an instrumented pavement traversed by the vehicle, measuring dynamic tire forces, or measuring vehicle parameters such as the 'natural frequency' and 'damping ratio'. Each of these measurements involves different assumptions and analysis methods for converting the results into some measure of road damage. Chapter 7 includes a summary of the main conclusions of the paper and recommendations for tire and suspension design, road design and construction, and for vehicle regulations.
Resumo:
Nanotube forest behaves as highly absorbent material when they are randomly placed in sub-wavelength scales. Furthermore, it is possible to create diffractive structures when these bulks are patterned in a substrate. Here, we introduce an alternative to fabricate intensity holograms by patterning fringes of nanotube forest on a substrate. The result is an efficient intensity hologram that is not restricted to sub-wavelength patterning. Both the theoretical and experimental analysis was performed with good agreement. The produced holograms show a uniform behaviour throughout the visible spectra. © 2013 AIP Publishing LLC.
Resumo:
This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.
Resumo:
We present Random Partition Kernels, a new class of kernels derived by demonstrating a natural connection between random partitions of objects and kernels between those objects. We show how the construction can be used to create kernels from methods that would not normally be viewed as random partitions, such as Random Forest. To demonstrate the potential of this method, we propose two new kernels, the Random Forest Kernel and the Fast Cluster Kernel, and show that these kernels consistently outperform standard kernels on problems involving real-world datasets. Finally, we show how the form of these kernels lend themselves to a natural approximation that is appropriate for certain big data problems, allowing $O(N)$ inference in methods such as Gaussian Processes, Support Vector Machines and Kernel PCA.