13 resultados para Force balance system

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used enhanced piezo-response force microscopy (E-PFM) to investigate both ferroelastic and ferroelectric nanodomains in thin films of the simple multi-ferroic system PbZr(0.3)Ti(0.7)O(3) (PZT). We show how the grains are organized into a new type of elastic domain bundles of the well-known periodic elastic twins. Here we present these bundle domains and discuss their stability and origin. Moreover, we show that they can arrange in such a way as to release strain in a more effective way than simple twinning. Finally, we show that these bundle domains can arrange to form the macroscopic ferroelectric domains that constitute the basis of ferroelectric-based memory devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A near-field optical microscope (NFOM) has been developed that combines the features of a near-field optical microscope and an atomic force microscope. Improved control over tip-sample separation has led to improved optical imaging and independent surface topography information. The tip oscillation is normal to the sample plane thereby reducing lateral forces - important for nonperturbative imaging of soft samples. Both topographic images and reflection near-field optical images are presented which demonstrate the capability of the system. © 1996 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The operation of dynamical systems in harsh environments requires continuous monitoring. Internal sensors may be used to monitor the conditions in real time. A typical example is the sensor and electronic components used in space structures which, especially during launch, are subject to huge g force. The paper will present an experimental and theoretical study on a simplified model used to analyze the possible cause of high acceleration on the enclosed sensors and equipments due to impulsive loading. The model system consists of two beams coupled using compliant connections. An impulse hammer excites one beam, and vibrations are transmitted to the indirectly driven beam. A theoretical model is developed using a Rayleigh-Ritz approach and validated using experimental results in both the frequency and time domains. Monto Carlo simulation was done with random masses positioned on the indirectly driven beam to determine the worst-case conditions for maximum peak acceleration. Highest acceleration levels were found when mode matching in the two beams led to veering behavior in the coupled modes. The results suggest guidelines for the detailed design of internal components of a structure exposed to shock loading from its environment. [The authors thank Schlumberger Cambridge Research for financial support.].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The developments of standard, projects and technology of PV concentrator system was briefly reported. A detailed description of photovoltaic concentrator system was given, which included technology and recent development of optical components, receivers and balance of system (BOS). The heat sink of passive cooling and active cooling was given. A brief discussion promise of this technology was included. Finally, main technological problems were presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply adjoint-based sensitivity analysis to a time-delayed thermo-acoustic system: a Rijke tube containing a hot wire. We calculate how the growth rate and frequency of small oscillations about a base state are affected either by a generic passive control element in the system (the structural sensitivity analysis) or by a generic change to its base state (the base-state sensitivity analysis). We illustrate the structural sensitivity by calculating the effect of a second hot wire with a small heat-release parameter. In a single calculation, this shows how the second hot wire changes the growth rate and frequency of the small oscillations, as a function of its position in the tube. We then examine the components of the structural sensitivity in order to determine the passive control mechanism that has the strongest influence on the growth rate. We find that a force applied to the acoustic momentum equation in the opposite direction to the instantaneous velocity is the most stabilizing feedback mechanism. We also find that its effect is maximized when it is placed at the downstream end of the tube. This feedback mechanism could be supplied, for example, by an adiabatic mesh. We illustrate the base-state sensitivity by calculating the effects of small variations in the damping factor, the heat-release time-delay coefficient, the heat-release parameter, and the hot-wire location. The successful application of sensitivity analysis to thermo-acoustics opens up new possibilities for the passive control of thermo-acoustic oscillations by providing gradient information that can be combined with constrained optimization algorithms in order to reduce linear growth rates. © Cambridge University Press 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current models of motor learning posit that skill acquisition involves both the formation and decay of multiple motor memories that can be engaged in different contexts. Memory formation is assumed to be context dependent, so that errors most strongly update motor memories associated with the current context. In contrast, memory decay is assumed to be context independent, so that movement in any context leads to uniform decay across all contexts. We demonstrate that for both object manipulation and force-field adaptation, contrary to previous models, memory decay is highly context dependent. We show that the decay of memory associated with a given context is greatest for movements made in that context, with more distant contexts showing markedly reduced decay. Thus, both memory formation and decay are strongest for the current context. We propose that this apparently paradoxical organization provides a mechanism for optimizing performance. While memory decay tends to reduce force output, memory formation can correct for any errors that arise, allowing the motor system to regulate force output so as to both minimize errors and avoid unnecessary energy expenditure. The motor commands for any given context thus result from a balance between memory formation and decay, while memories for other contexts are preserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heavy goods vehicles exhibit poor braking performance in emergency situations when compared to other vehicles. Part of the problem is caused by sluggish pneumatic brake actuators, which limit the control bandwidth of their antilock braking systems. In addition, heuristic control algorithms are used that do not achieve the maximum braking force throughout the stop. In this article, a novel braking system is introduced for pneumatically braked heavy goods vehicles. The conventional brake actuators are improved by placing high-bandwidth, binary-actuated valves directly on the brake chambers. A made-for-purpose valve is described. It achieves a switching delay of 3-4 ms in tests, which is an order of magnitude faster than solenoids in conventional anti-lock braking systems. The heuristic braking control algorithms are replaced with a wheel slip regulator based on sliding mode control. The combined actuator and slip controller are shown to reduce stopping distances on smooth and rough, high friction (μ = 0.9) surfaces by 10% and 27% respectively in hardware-in-the-loop tests compared with conventional ABS. On smooth and rough, low friction (μ = 0.2) surfaces, stopping distances are reduced by 23% and 25%, respectively. Moreover, the overall air reservoir size required on a heavy goods vehicle is governed by its air usage during an anti-lock braking stop on a low friction, smooth surface. The 37% reduction in air usage observed in hardware-in-the-loop tests on this surface therefore represents the potential reduction in reservoir size that could be achieved by the new system. © 2012 IMechE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successful motor performance requires the ability to adapt motor commands to task dynamics. A central question in movement neuroscience is how these dynamics are represented. Although it is widely assumed that dynamics (e.g., force fields) are represented in intrinsic, joint-based coordinates (Shadmehr R, Mussa-Ivaldi FA. J Neurosci 14: 3208-3224, 1994), recent evidence has questioned this proposal. Here we reexamine the representation of dynamics in two experiments. By testing generalization following changes in shoulder, elbow, or wrist configurations, the first experiment tested for extrinsic, intrinsic, or object-centered representations. No single coordinate frame accounted for the pattern of generalization. Rather, generalization patterns were better accounted for by a mixture of representations or by models that assumed local learning and graded, decaying generalization. A second experiment, in which we replicated the design of an influential study that had suggested encoding in intrinsic coordinates (Shadmehr and Mussa-Ivaldi 1994), yielded similar results. That is, we could not find evidence that dynamics are represented in a single coordinate system. Taken together, our experiments suggest that internal models do not employ a single coordinate system when generalizing and may well be represented as a mixture of coordinate systems, as a single system with local learning, or both.