5 resultados para Foot, Solomon, 1802-1866.
em Cambridge University Engineering Department Publications Database
Resumo:
We introduce a new algorithm to automatically identify the time and pixel location of foot contact events in high speed video of sprinters. We use this information to autonomously synchronise and overlay multiple recorded performances to provide feedback to athletes and coaches during their training sessions. The algorithm exploits the variation in speed of different parts of the body during sprinting. We use an array of foreground accumulators to identify short-term static pixels and a temporal analysis of the associated static regions to identify foot contacts. We evaluated the technique using 13 videos of three sprinters. It successfully identifed 55 of the 56 contacts, with a mean localisation error of 1.39±1.05 pixels. Some videos were also seen to produce additional, spurious contacts. We present heuristics to help identify the true contacts. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
Stick insects (Carausius morosus) have two distinct types of attachment pad per leg, tarsal "heel" pads (euplantulae) and a pre-tarsal "toe" pad (arolium). Here we show that these two pad types are specialised for fundamentally different functions. When standing upright, stick insects rested on their proximal euplantulae, while arolia were the only pads in surface contact when hanging upside down. Single-pad force measurements showed that the adhesion of euplantulae was extremely small, but friction forces strongly increased with normal load and coefficients of friction were [Formula: see text] 1. The pre-tarsal arolium, in contrast, generated adhesion that strongly increased with pulling forces, allowing adhesion to be activated and deactivated by shear forces, which can be produced actively, or passively as a result of the insects' sprawled posture. The shear-sensitivity of the arolium was present even when corrected for contact area, and was independent of normal preloads covering nearly an order of magnitude. Attachment of both heel and toe pads is thus activated partly by the forces that arise passively in the situations in which they are used by the insects, ensuring safe attachment. Our results suggest that stick insect euplantulae are specialised "friction pads" that produce traction when pressed against the substrate, while arolia are "true" adhesive pads that stick to the substrate when activated by pulling forces.