4 resultados para Food processing plants
em Cambridge University Engineering Department Publications Database
Resumo:
In this paper we shall discuss the use of the TSIM simulation software for modelling large-scale industrial processes. The discussion draws on our recent experience of modelling a large plant in the food-processing industry. We shall focus on those features of software organization and software engineering which proved to be particularly necessary for the execution of this project, and illustrate the extent to which the use of TISM facilitated the implementation of these features. We shall also make some general remarks about the 'life-cycle' of models resulting from projects of this kind.
Resumo:
Plants control their flowering time in order to ensure that they reproduce under favourable conditions. The components involved in this complex process have been identified using a molecular genetic approach in Arabidopsis and classified into genetically separable pathways. The autonomous pathway controls the level of mRNA encoding a floral repressor, FLC, and comprises three RNA-binding proteins, FCA, FPA and FLK. FCA interacts with the 3'-end RNA-processing factor FY to autoregulate its own expression post-transcriptionally and to control FLC. Other components of the autonomous pathway, FVE and FLD, regulate FLC epigenetically. This combination of epigenetic and post-transcriptional control gives precision to the control of FLC expression and flowering time.